Barnieh FM, Loadman PM, Falconer RA (2021) Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer 1876(2):188641. https://doi.org/10.1016/j.bbcan.2021.188641
Burger BT, Beaton BP, Campbell MA, Brett BT, Rohrer MS, Plummer S, Barnes D, Jiang K, Naswa S, Lange J, Ott A, Alger E, Rincon G, Rounsley S, Betthauser J, Mtango NR, Benne JA, Hammerand J, Durfee CJ, Rotolo ML, Cameron P, Lied AM, Irby MJ, Nyer DB, Fuller CK, Gradia S, Kanner SB, Park K-E, Waters J, Simpson S, Telugu BP, Salgado BC, Brandariz-Nuñez A, Rowland RRR, Culbertson M, Rice E, Cigan AM (2024) Generation of a Commercial-Scale Founder Population of Porcine Reproductive and Respiratory Syndrome Virus Resistant Pigs Using CRISPR-Cas. The CRISPR Journal 7(1):12–28. https://doi.org/10.1089/crispr.2023.0061
Cao Y, Liang N, Kong K, Qiao X, Liu T, Fang JA, Zhang X (2024) CD163 as a potential biomarker-associated immune inflammation in diabetes mellitus: a systematic review and bioinformatics analysis. Endocr Metab Immune Disord Drug Targets 24(2):208–219. https://doi.org/10.2174/1871530323666230714162324
Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247
Enache OM, Rendo V, Abdusamad M, Lam D, Davison D, Pal S, Currimjee N, Hess J, Pantel S, Nag A, Thorner AR, Doench JG, Vazquez F, Beroukhim R, Golub TR, Ben-David U (2020) Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet 52(7):662–668. https://doi.org/10.1038/s41588-020-0623-4
Article PubMed PubMed Central Google Scholar
Fan Z, Mu Y, Sonstegard T, Zhai X, Li K, Hackett PB, Zhu Z (2021) Social acceptance for commercialization of genetically modified food animals. Natl Sci Rev 8(8):nwab067. https://doi.org/10.1093/nsr/nwab067
Article PubMed PubMed Central Google Scholar
Fan Z, Liu Z, Xu K, Wu T, Ruan J, Zheng X, Bao S, Mu Y, Sonstegard T, Li K (2022) Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci 65(2):362–375. https://doi.org/10.1007/s11427-020-1927-9
Fan Z, Mu Y, Li K, Hackett PB (2022) Safety evaluation of transgenic and genome-edited food animals. Trends Biotechnol 40(4):371–373. https://doi.org/10.1016/j.tibtech.2021.10.012
Geisinger JM, Stearns T (2020) CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Res 48(16):9067–9081. https://doi.org/10.1093/nar/gkaa603
Article PubMed PubMed Central Google Scholar
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24(7):927–930. https://doi.org/10.1038/s41591-018-0049-z
Huang Z, Sun K, Luo Z, Zhang J, Zhou H, Yin H, Liang Z, You J (2024) Spleen-targeted delivery systems and strategies for spleen-related diseases. J Control Release 370:773–797. https://doi.org/10.1016/j.jconrel.2024.05.007
Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24(7):939–946. https://doi.org/10.1038/s41591-018-0050-6
Jivanji S, Harland C, Cole S, Brophy B, Garrick D, Snell R, Littlejohn M, Laible G (2021) The genomes of precision edited cloned calves show no evidence for off-target events or increased de novo mutagenesis. BMC Genomics 22(1):457. https://doi.org/10.1186/s12864-021-07804-x
Article PubMed PubMed Central Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915. https://doi.org/10.1038/s41587-019-0201-4
Article PubMed PubMed Central Google Scholar
Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman H-J, Law SKA, Moestrup SK (2001) Identification of the haemoglobin scavenger receptor. Nature 409(6817):198–201. https://doi.org/10.1038/35051594
Li C, Zhou S, Li Y, Li G, Ding Y, Li L, Liu J, Qu L, Sonstegard T, Huang X, Jiang Y, Chen Y, Petersen B, Wang X (2018) Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats. Front Genet 9:449. https://doi.org/10.3389/fgene.2018.00449
Article PubMed PubMed Central Google Scholar
Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47(8):e47. https://doi.org/10.1093/nar/gkz114
Article PubMed PubMed Central Google Scholar
Liu Z, Wu T, Xiang G, Wang H, Wang B, Feng Z, Mu Y, Li K (2022) Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing. Int J Mol Sci 23(13):7331. https://doi.org/10.3390/ijms23137331
Article PubMed PubMed Central Google Scholar
Liu X, Xing B, Wang M, Li X, Wang X, Wang Z (2023) No obvious unintended effects was found in gene editing rice through transcriptional and proteomic analysis. GM Crops & Food 14(1):1–16. https://doi.org/10.1080/21645698.2023.2229927
Long Y, Xu W, Liu C, Dong M, Liu W, Pei X, Li L, Chen R, Jin W (2023) Genetically modified soybean lines exhibit less transcriptomic variation compared to natural varieties. GM Crops & Food 14(1):1–11. https://doi.org/10.1080/21645698.2023.2233122
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8
Article PubMed PubMed Central Google Scholar
Lu C, Amin MA, Fox DA (2020) CD13/Aminopeptidase N is a potential therapeutic target for inflammatory disorders. J Immunol 204(1):3–11. https://doi.org/10.4049/jimmunol.1900868
Mina-Osorio P (2008) The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med 14(8):361–371. https://doi.org/10.1016/j.molmed.2008.06.003
Article PubMed PubMed Central Google Scholar
Nesbitt C, Galina Pantoja L, Beaton B, Chen CY, Culbertson M, Harms P, Holl J, Sosnicki A, Reddy S, Rotolo M, Rice E (2024) Pigs lacking the SRCR5 domain of CD163 protein demonstrate heritable resistance to the PRRS virus and no changes in animal performance from birth to maturity. Front Genome Ed 6:1322012. https://doi.org/10.3389/fgeed.2024.1322012
Article PubMed PubMed Central Google Scholar
Rangel R, Sun Y, Guzman-Rojas L, Ozawa MG, Sun J, Giordano RJ, Van Pelt CS, Tinkey PT, Behringer RR, Sidman RL, Arap W, Pasqualini R (2007) Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci USA 104(11):4588–4593. https://doi.org/10.1073/pnas.0611653104
Article PubMed PubMed Central Google Scholar
Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25
Article PubMed PubMed Central Google Scholar
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616
Shi J, Xu C, Wu Z, Bao W, Wu S (2022) Integrated analysis of lncRNA-mediated ceRNA network involved in immune regulation in the spleen of Meishan piglets. Front Vet Sci 9:1031786. https://doi.org/10.3389/fvets.2022.1031786
Article PubMed PubMed Central Google Scholar
Wang X, Liu J, Niu Y, Li Y, Zhou S, Li C, Ma B, Kou Q, Petersen B, Sonstegard T, Huang X, Jiang Y, Chen Y (2018) Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep. BMC Genomics 19(1):397. https://doi.org/10.1186/s12864-018-4712-z
Comments (0)