Transcriptome analysis reveals no obvious unintended effects in the spleen of CRISPR/Cas9-mediated and double-knockout pigs

Barnieh FM, Loadman PM, Falconer RA (2021) Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer 1876(2):188641. https://doi.org/10.1016/j.bbcan.2021.188641

Article  PubMed  Google Scholar 

Burger BT, Beaton BP, Campbell MA, Brett BT, Rohrer MS, Plummer S, Barnes D, Jiang K, Naswa S, Lange J, Ott A, Alger E, Rincon G, Rounsley S, Betthauser J, Mtango NR, Benne JA, Hammerand J, Durfee CJ, Rotolo ML, Cameron P, Lied AM, Irby MJ, Nyer DB, Fuller CK, Gradia S, Kanner SB, Park K-E, Waters J, Simpson S, Telugu BP, Salgado BC, Brandariz-Nuñez A, Rowland RRR, Culbertson M, Rice E, Cigan AM (2024) Generation of a Commercial-Scale Founder Population of Porcine Reproductive and Respiratory Syndrome Virus Resistant Pigs Using CRISPR-Cas. The CRISPR Journal 7(1):12–28. https://doi.org/10.1089/crispr.2023.0061

Article  PubMed  Google Scholar 

Cao Y, Liang N, Kong K, Qiao X, Liu T, Fang JA, Zhang X (2024) CD163 as a potential biomarker-associated immune inflammation in diabetes mellitus: a systematic review and bioinformatics analysis. Endocr Metab Immune Disord Drug Targets 24(2):208–219. https://doi.org/10.2174/1871530323666230714162324

Article  PubMed  Google Scholar 

Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

Article  Google Scholar 

Enache OM, Rendo V, Abdusamad M, Lam D, Davison D, Pal S, Currimjee N, Hess J, Pantel S, Nag A, Thorner AR, Doench JG, Vazquez F, Beroukhim R, Golub TR, Ben-David U (2020) Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet 52(7):662–668. https://doi.org/10.1038/s41588-020-0623-4

Article  PubMed  PubMed Central  Google Scholar 

Fan Z, Mu Y, Sonstegard T, Zhai X, Li K, Hackett PB, Zhu Z (2021) Social acceptance for commercialization of genetically modified food animals. Natl Sci Rev 8(8):nwab067. https://doi.org/10.1093/nsr/nwab067

Article  PubMed  PubMed Central  Google Scholar 

Fan Z, Liu Z, Xu K, Wu T, Ruan J, Zheng X, Bao S, Mu Y, Sonstegard T, Li K (2022) Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci 65(2):362–375. https://doi.org/10.1007/s11427-020-1927-9

Article  PubMed  Google Scholar 

Fan Z, Mu Y, Li K, Hackett PB (2022) Safety evaluation of transgenic and genome-edited food animals. Trends Biotechnol 40(4):371–373. https://doi.org/10.1016/j.tibtech.2021.10.012

Article  PubMed  Google Scholar 

Geisinger JM, Stearns T (2020) CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Res 48(16):9067–9081. https://doi.org/10.1093/nar/gkaa603

Article  PubMed  PubMed Central  Google Scholar 

Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24(7):927–930. https://doi.org/10.1038/s41591-018-0049-z

Article  PubMed  Google Scholar 

Huang Z, Sun K, Luo Z, Zhang J, Zhou H, Yin H, Liang Z, You J (2024) Spleen-targeted delivery systems and strategies for spleen-related diseases. J Control Release 370:773–797. https://doi.org/10.1016/j.jconrel.2024.05.007

Article  PubMed  Google Scholar 

Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24(7):939–946. https://doi.org/10.1038/s41591-018-0050-6

Article  PubMed  Google Scholar 

Jivanji S, Harland C, Cole S, Brophy B, Garrick D, Snell R, Littlejohn M, Laible G (2021) The genomes of precision edited cloned calves show no evidence for off-target events or increased de novo mutagenesis. BMC Genomics 22(1):457. https://doi.org/10.1186/s12864-021-07804-x

Article  PubMed  PubMed Central  Google Scholar 

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915. https://doi.org/10.1038/s41587-019-0201-4

Article  PubMed  PubMed Central  Google Scholar 

Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman H-J, Law SKA, Moestrup SK (2001) Identification of the haemoglobin scavenger receptor. Nature 409(6817):198–201. https://doi.org/10.1038/35051594

Article  PubMed  Google Scholar 

Li C, Zhou S, Li Y, Li G, Ding Y, Li L, Liu J, Qu L, Sonstegard T, Huang X, Jiang Y, Chen Y, Petersen B, Wang X (2018) Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats. Front Genet 9:449. https://doi.org/10.3389/fgene.2018.00449

Article  PubMed  PubMed Central  Google Scholar 

Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47(8):e47. https://doi.org/10.1093/nar/gkz114

Article  PubMed  PubMed Central  Google Scholar 

Liu Z, Wu T, Xiang G, Wang H, Wang B, Feng Z, Mu Y, Li K (2022) Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing. Int J Mol Sci 23(13):7331. https://doi.org/10.3390/ijms23137331

Article  PubMed  PubMed Central  Google Scholar 

Liu X, Xing B, Wang M, Li X, Wang X, Wang Z (2023) No obvious unintended effects was found in gene editing rice through transcriptional and proteomic analysis. GM Crops & Food 14(1):1–16. https://doi.org/10.1080/21645698.2023.2229927

Article  Google Scholar 

Long Y, Xu W, Liu C, Dong M, Liu W, Pei X, Li L, Chen R, Jin W (2023) Genetically modified soybean lines exhibit less transcriptomic variation compared to natural varieties. GM Crops & Food 14(1):1–11. https://doi.org/10.1080/21645698.2023.2233122

Article  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

Article  PubMed  PubMed Central  Google Scholar 

Lu C, Amin MA, Fox DA (2020) CD13/Aminopeptidase N is a potential therapeutic target for inflammatory disorders. J Immunol 204(1):3–11. https://doi.org/10.4049/jimmunol.1900868

Article  PubMed  Google Scholar 

Mina-Osorio P (2008) The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med 14(8):361–371. https://doi.org/10.1016/j.molmed.2008.06.003

Article  PubMed  PubMed Central  Google Scholar 

Nesbitt C, Galina Pantoja L, Beaton B, Chen CY, Culbertson M, Harms P, Holl J, Sosnicki A, Reddy S, Rotolo M, Rice E (2024) Pigs lacking the SRCR5 domain of CD163 protein demonstrate heritable resistance to the PRRS virus and no changes in animal performance from birth to maturity. Front Genome Ed 6:1322012. https://doi.org/10.3389/fgeed.2024.1322012

Article  PubMed  PubMed Central  Google Scholar 

Rangel R, Sun Y, Guzman-Rojas L, Ozawa MG, Sun J, Giordano RJ, Van Pelt CS, Tinkey PT, Behringer RR, Sidman RL, Arap W, Pasqualini R (2007) Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci USA 104(11):4588–4593. https://doi.org/10.1073/pnas.0611653104

Article  PubMed  PubMed Central  Google Scholar 

Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25

Article  PubMed  PubMed Central  Google Scholar 

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

Article  PubMed  Google Scholar 

Shi J, Xu C, Wu Z, Bao W, Wu S (2022) Integrated analysis of lncRNA-mediated ceRNA network involved in immune regulation in the spleen of Meishan piglets. Front Vet Sci 9:1031786. https://doi.org/10.3389/fvets.2022.1031786

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Liu J, Niu Y, Li Y, Zhou S, Li C, Ma B, Kou Q, Petersen B, Sonstegard T, Huang X, Jiang Y, Chen Y (2018) Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep. BMC Genomics 19(1):397. https://doi.org/10.1186/s12864-018-4712-z

Article  PubMed 

Comments (0)

No login
gif