Huang S, Yang W, Ye S, et al. Fluorescence recovery based on synergetic effect for ALP detection. Spectrochim Acta A Mol Biomol Spectrosc. 2022;280:121550. https://doi.org/10.1016/j.saa.2022.121550.
Article CAS PubMed Google Scholar
Chen Y, Han JJ, Li BW, et al. A ratiometric fluorescence biosensor for detection of alkaline phosphatase via an advanced chemometric model. J Fluoresc. 2024;34(6):2655–64. https://doi.org/10.1007/s10895-023-03445-3.
Article CAS PubMed Google Scholar
Dong L, Miao QQ, Hai ZJ, et al. Enzymatic hydrogelation-induced fluorescence turn-off for sensing alkaline phosphatase in vitro and in living cells. Anal Chem. 2015;87:6475–8. https://doi.org/10.1021/acs.analchem.5b01657.
Article CAS PubMed Google Scholar
Liu S, Pang S, Na W, et al. Near-infrared fluorescence probe for the determination of alkaline phosphatase. Biosens Bioelectron. 2014;55:249–54. https://doi.org/10.1016/j.bios.2013.12.023.
Article CAS PubMed Google Scholar
Kong RM, Li P, Ge X, et al. Ratiometric fluorescence determination of alkaline phosphatase activity based on carbon dots and Ce-crosslinked copper nanoclusters. Mikrochim Acta. 2023;190(12):487. https://doi.org/10.1007/s00604-023-06048-8.
Article CAS PubMed Google Scholar
Ma X, Du C, Shang M, et al. VS quantum dot label-free fluorescent probe for sensitive and selective detection of ALP. Anal Bioanal Chem. 2018;410(5):1417–26. https://doi.org/10.1007/s00216-017-0778-8.
Article CAS PubMed Google Scholar
Lv Y, Chen J, Zhou X, et al. A ratiometric fluorescence method based on nitrogen-doped carbon quantum dots for the determination of the activity of alkaline phosphatase. Anal Bioanal Chem. 2022;414(28):7989–98. https://doi.org/10.1007/s00216-022-04329-4.
Article CAS PubMed Google Scholar
Arai T, Nishijo T, Matsumae Y, et al. Noninvasive measurement of alkaline phosphatase activity in embryoid bodies and coculture spheroids with scanning electrochemical microscopy. Anal Chem. 2013;85(20):9647–54. https://doi.org/10.1021/ac401824q.
Article CAS PubMed Google Scholar
Balogun K, Lee M, Doyle K. Comparison of heat fractionation and gel electrophoresis methods for the quantitative determination of alkaline phosphatase isoenzymes. Am J ClinPathol. 2020;154:S8–S8. https://doi.org/10.1093/ajcp/aqaa137.014.
Moura SL, Pallares-Rusinol A, Sappia L, et al. The activity of alkaline phosphatase in breast cancer exosomes simplifies the biosensing design. Biosens Bioelectron. 2021;198:113826. https://doi.org/10.1016/j.bios.2021.113826.
Article CAS PubMed Google Scholar
Choi Y, Ho NH, Tung CH. Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed. 2007;46:707–9. https://doi.org/10.1002/anie.200603735.
Mlinarić Z, Turković L, Babić I. Development, cross-validation and greenness assessment of capillary electrophoresis method for determination of ALP in pharmaceutical dosage forms - an alternative to liquid chromatography. RSC Adv. 2024;14(45):32876–82. https://doi.org/10.1039/d4ra05715e.
Article CAS PubMed PubMed Central Google Scholar
Mao G, Qiu C, Luo X. Synergistic effect-triggered fluorescence quenching enables rapid and sensitive detection of alkaline phosphatase. Anal Chim Acta. 2023;1272:341510. https://doi.org/10.1016/j.aca.
Article CAS PubMed Google Scholar
Park CS, Ha TH, Kim M, et al. Fast and sensitive near-infrared fluorescent probes for ALP detection and 3d printed calcium phosphate scaffold imaging in vivo. Biosens Bioelectron. 2018;105:151–8. https://doi.org/10.1016/j.bios.2018.01.018.
Article CAS PubMed Google Scholar
Hu P, Huang R, Xu Y. A novel and sensitive ratiometric fluorescent quantum dot-based biosensor for alkaline phosphatase detection in biological samples via the inner-filter effect. RSC Adv. 2023;13(4):2311–7. https://doi.org/10.1039/d2ra06956c.
Article CAS PubMed PubMed Central Google Scholar
Lu ZX, Wu JS, Liu WM, et al. A ratiometric fluorescent probe for quantification of alkaline phosphatase in living cells. RSC Adv. 2016;6:32046–51. https://doi.org/10.1039/C6RA00983B.
Li SJ, Li CY, Li YF et al (2017) A facile and sensitive near-infrared fluorescence probe for the detection of endogenous alkaline phosphatase activity in vivo. Anal Chem 89(12). https://doi.org/10.1021/acs.analchem.
Liu XX, Ying YB, Ping JF. Structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosens Bioelectron. 2020;167: 112495.https://doi.org/10.1016/j.bios.2020.112495.
Article CAS PubMed Google Scholar
Lu Q, Huang T, Zhou J, et al. Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection. Spectrochim Acta A Mol Biomol Spectrosc. 2021;244: 118893. https://doi.org/10.1016/j.saa.2020.118893.
Article CAS PubMed Google Scholar
Li H, Huang X, Huang J, et al. Fluorescence assay for detecting four organophosphorus pesticides using fluorescently labeled aptamer. Sensors (Basel). 2022;22(15): 5712. https://doi.org/10.3390/s22155712.
Article CAS PubMed Google Scholar
Eissa S, Zourob M. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Anal Chem. 2017;89(5):3138–45. https://doi.org/10.1021/acs.analchem.6b04914.
Article CAS PubMed Google Scholar
Wang R, Qin Y, Liu X, et al. Electrochemical biosensor based on well-dispersed boron nitride colloidal nanoparticles and DNA aptamers for ultrasensitive detection of carbendazim. ACS Omega. 2021;6(41):27405–11. https://doi.org/10.1021/acsomega.1c04326.
Article CAS PubMed PubMed Central Google Scholar
Kubackova J, Zbytovska J, Holas O. Nanomaterials for direct and indirect immunomodulation: a review of applications. Eur J Pharm Sci. 2020;142: 105139. https://doi.org/10.1016/j.ejps.2019.105139.
Article CAS PubMed Google Scholar
Yan L, Zhao F, Wang J, et al. A safe-by-design strategy towards safer nanomaterials in nanomedicines. Adv Mater. 2019;31(45): e1805391. https://doi.org/10.1002/adma.201805391.
Article CAS PubMed Google Scholar
Saberi Z, Rezaei B, Khayamian T. A fluorescent aptasensor for analysis of adenosine triphosphate based on aptamer-magnetic nanoparticles and its single-stranded complementary DNA labeled carbon dots. Luminescence. 2018;33(4):640–6. https://doi.org/10.1002/bio.3457.
Article CAS PubMed Google Scholar
Song H, Wang C, Zhang H, et al. A high-loading drug delivery system based on magnetic nanomaterials modified by hyperbranched phenylboronic acid for tumor-targeting treatment with pH response. Colloids Surf B Biointerfaces. 2019;182: 110375. https://doi.org/10.1016/j.colsurfb.2019.110375.
Article CAS PubMed Google Scholar
Wang Z, Liao H, Wu H, et al. Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. Anal Methods. 2015;7(20):8911–7. https://doi.org/10.1039/c5ay01978h.
Chen XJ, Gao D, Sun FX. Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review. Anal Bioanal Chem. 2022;414(9):2953–69. https://doi.org/10.1007/s00216-022-03960-5.
Article CAS PubMed Google Scholar
Hong G, Diao S, Antaris AL. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115(19):10816–906. https://doi.org/10.1021/acs.chemrev.
Comments (0)