Pentameric nanobodies serve as a capture agent and RANbodies function as immunoprobes for the sensitive detection of in immunoassays

Johnson R, Mylona E, Frankel G. Typhoidal Salmonella: distinctive virulence factors and pathogenesis. Cell Microbiol. 2018;20(9):e12939. https://doi.org/10.1111/cmi.12939.

Article  CAS  PubMed  Google Scholar 

Galan JE. Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol. 2021;19(11):716–25. https://doi.org/10.1038/s41579-021-00561-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larkin L, Pardos de la Gandara M, Hoban A, Pulford C, Jourdan-Da Silva N, de Valk H, Browning L, Falkenhorst G, Simon S, Lachmann R, Dryselius R, Karamehmedovic N, Borjesson S, van Cauteren D, Laisnez V, Mattheus W, Pijnacker R, van den Beld M, Mossong J, Ragimbeau C, Vergison A, Thorstensen Brandal L, Lange H, Garvey P, Nielsen CS, Herrera Leon S, Varela C, Chattaway M, Weill FX, Brown D, McKeown P. Investigation of an international outbreak of multidrug-resistant monophasic Salmonella Typhimurium associated with chocolate products, EU/EEA and United Kingdom, February to April 2022. Euro Surveill. 2022;27(15):2200314. https://doi.org/10.2807/1560-7917.ES.2022.27.15.2200314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehuwa O, Jaiswal AK, Jaiswal S. Salmonella, food safety and food handling practices. Foods. 2021;10(5):907. https://doi.org/10.3390/foods10050907.

Article  PubMed  PubMed Central  Google Scholar 

Nguyen MM, Gil J, Brown M, Cesar Tondo E, Martins S, de Aquino N, Eisenberg M, Erickson S. Accurate and sensitive detection of Salmonella in foods by engineered bacteriophages. Sci Rep. 2020;10(1):17463. https://doi.org/10.1038/s41598-020-74587-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du M, Li J, Liu Q, Wang Y, Chen E, Kang F, Tu C. Rapid detection of trace Salmonella in milk using an effective pretreatment combined with droplet digital polymerase chain reaction. Microbiol Res. 2021;251:126838. https://doi.org/10.1016/j.micres.2021.126838.

Article  CAS  PubMed  Google Scholar 

Fathi S, Jalilzadeh N, Amini M, Shanebandi D, Baradaran B, Oroojalian F, Mokhtarzadeh A, Kesharwani P, Sahebkar A. Surface plasmon resonance-based oligonucleotide biosensor for Salmonella Typhi detection. Anal Biochem. 2023;677:115250. https://doi.org/10.1016/j.ab.2023.115250.

Article  CAS  PubMed  Google Scholar 

Zhang P, Wu XH, Su L, Wang HQ, Lin TF, Fang YP, Zhao HM, Lu WJ, Liu MJ, Liu WB, Zheng DW. Rapid, label-free prediction of antibiotic resistance in Salmonella typhimurium by surface-enhanced Raman spectroscopy. Int J Mol Sci. 2022;23:(3). https://doi.org/10.3390/ijms23031356.

Article  CAS  PubMed Central  Google Scholar 

Gheorghiu E. Detection of pathogenic bacteria by magneto-immunoassays: a review. J Biomed Res. 2020;35(4):277–83. https://doi.org/10.7555/JBR.34.20200123.

Article  PubMed  PubMed Central  Google Scholar 

Li X, Sun R, Pan J, Shi Z, An Z, Dai C, Lv J, Liu G, Liang H, Liu J, Lu Y, Zhang F, Liu Q. Rapid and on-site wireless immunoassay of respiratory virus aerosols via hydrogel-modulated resonators. Nat Commun. 2024;15(1):4035. https://doi.org/10.1038/s41467-024-48294-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caceres DH, Chiller T, Lindsley MD. Immunodiagnostic assays for the investigation of fungal outbreaks. Mycopathologia. 2020;185(5):867–80. https://doi.org/10.1007/s11046-020-00452-x.

Article  PubMed  Google Scholar 

Alsulami T, Nath N, Flemming R, Wang H, Zhou W, Yu JH. Development of a novel homogeneous immunoassay using the engineered luminescent enzyme NanoLuc for the quantification of the mycotoxin fumonisin B1. Biosens Bioelectron. 2021;177:112939. https://doi.org/10.1016/j.bios.2020.112939.

Article  CAS  PubMed  Google Scholar 

Stanker LH, Hnasko RM. A double-sandwich ELISA for identification of monoclonal antibodies suitable for sandwich immunoassays. Methods Mol Biol. 2015;1318:69–78. https://doi.org/10.1007/978-1-4939-2742-5_7.

Article  PubMed  Google Scholar 

Kothari M, Wanjari A, Acharya S, Karwa V, Chavhan R, Kumar S, Kadu A, Patil R. A comprehensive review of monoclonal antibodies in modern medicine: tracing the evolution of a revolutionary therapeutic approach. Cureus. 2024;16(6):e61983. https://doi.org/10.7759/cureus.61983.

Article  PubMed  PubMed Central  Google Scholar 

Rodriguez S, Garcia-Garcia A, Garcia-Calvo E, Esteban V, Pastor-Vargas C, Diaz-Perales A, Garcia T, Martin R. Generation of an ovomucoid-immune scFv library for the development of novel immunoassays in hen’s egg detection. Foods. 2023;12(20):3831. https://doi.org/10.3390/foods12203831.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo M, Pang J, Wang Y, Bi C, Xu Z, Shen Y, Yang J, Wang H, Sun Y. Nanobodies-based colloidal gold immunochromatographic assay for specific detection of parathion. Anal Chim Acta. 2024;1310:342717. https://doi.org/10.1016/j.aca.2024.342717.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Yang J, Niu Q, Wang J, Jing M, Guan G, Liu M, Luo J, Yin H, Liu Z. Identification and characterization of nanobodies from a phage display library and their application in an immunoassay for the sensitive detection of African swine fever virus. J Clin Microbiol. 2023;61(6):e0119722. https://doi.org/10.1128/jcm.01197-22.

Article  CAS  PubMed  Google Scholar 

Ren Y, Wei J, Wang Y, Wang P, Ji Y, Liu B, Wang J, Gonzalez-Sapienza G, Wang Y. Development of a streptavidin-bridged enhanced sandwich ELISA based on self-paired nanobodies for monitoring multiplex Salmonella serogroups. Anal Chim Acta. 2022;1203:339705. https://doi.org/10.1016/j.aca.2022.339705.

Article  CAS  PubMed  Google Scholar 

Prasad M, Ranjan K, Brar B, Shah I, Lalmbe U, Manimegalai J, Vashisht B, Gaury M, Kumar P, Khurana SK, Prasad G, Rawat J, Yadav V, Kumar S, Rao R. Virus-host interactions: new insights and advances in drug development against viral pathogens. Curr Drug Metab. 2017;18(10):942–70. https://doi.org/10.2174/1389200218666170925115132.

Article  CAS  PubMed  Google Scholar 

Gu Y, Guo Y, Deng Y, Song H, Nian R, Liu W. Development of a highly sensitive immunoassay based on pentameric nanobodies for carcinoembryonic antigen detection. Anal Chim Acta. 2023;1279:341840. https://doi.org/10.1016/j.aca.2023.341840.

Article  CAS  PubMed  Google Scholar 

Liang Y, Zeng Y, Luo L, Xu Z, Shen Y, Wang H, Hammock BD. Detection of acrylamide in foodstuffs by nanobody-based immunoassays. J Agric Food Chem. 2022;70(29):9179–86. https://doi.org/10.1021/acs.jafc.2c01872.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teodori L, Ochoa SK, Omer M, Andersen VL, Bech P, Su J, Bridoux J, Nielsen JS, Bertelsen MB, Hernot S, Gothelf KV, Kjems J. Plug-and-play nucleic acid-mediated multimerization of biparatopic nanobodies for molecular imaging. Mol Ther Nucleic Acids. 2024;35(3):102305. https://doi.org/10.1016/j.omtn.2024.102305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deyev SM, Lebedenko EN. Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design. BioEssays. 2008;30(9):904–18. https://doi.org/10.1002/bies.20805.

Article  CAS  PubMed  Google Scholar 

Bao K, Liu X, Xu Q, Su B, Liu Z, Cao H, Chen Q. Nanobody multimerization strategy to enhance the sensitivity of competitive ELISA for detection of ochratoxin A in coffee samples. Food Control. 2021;127:108167. https://doi.org/10.1016/j.foodcont.2021.108167.

Article  CAS  Google Scholar 

Fan K, Jiang B, Guan Z, He J, Yang D, Xie N, Nie G, Xie C, Yan X. Fenobody: a ferritin-displayed nanobody with high apparent affinity and half-life extension. Anal Chem. 2018;90(9):5671–7. https://doi.org/10.1021/acs.analchem.7b05217.

Article  CAS  PubMed  Google Scholar 

Yan T, Zhu J, Li Y, He T, Yang Y, Liu M. Development of a biotinylated nanobody for sensitive detection of aflatoxin B(1) in cereal via ELISA. Talanta. 2022;239:123125. https://doi.org/10.1016/j.talanta.2021.123125.

Article  CAS 

Comments (0)

No login
gif