Johnson R, Mylona E, Frankel G. Typhoidal Salmonella: distinctive virulence factors and pathogenesis. Cell Microbiol. 2018;20(9):e12939. https://doi.org/10.1111/cmi.12939.
Article CAS PubMed Google Scholar
Galan JE. Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol. 2021;19(11):716–25. https://doi.org/10.1038/s41579-021-00561-4.
Article CAS PubMed PubMed Central Google Scholar
Larkin L, Pardos de la Gandara M, Hoban A, Pulford C, Jourdan-Da Silva N, de Valk H, Browning L, Falkenhorst G, Simon S, Lachmann R, Dryselius R, Karamehmedovic N, Borjesson S, van Cauteren D, Laisnez V, Mattheus W, Pijnacker R, van den Beld M, Mossong J, Ragimbeau C, Vergison A, Thorstensen Brandal L, Lange H, Garvey P, Nielsen CS, Herrera Leon S, Varela C, Chattaway M, Weill FX, Brown D, McKeown P. Investigation of an international outbreak of multidrug-resistant monophasic Salmonella Typhimurium associated with chocolate products, EU/EEA and United Kingdom, February to April 2022. Euro Surveill. 2022;27(15):2200314. https://doi.org/10.2807/1560-7917.ES.2022.27.15.2200314.
Article CAS PubMed PubMed Central Google Scholar
Ehuwa O, Jaiswal AK, Jaiswal S. Salmonella, food safety and food handling practices. Foods. 2021;10(5):907. https://doi.org/10.3390/foods10050907.
Article PubMed PubMed Central Google Scholar
Nguyen MM, Gil J, Brown M, Cesar Tondo E, Martins S, de Aquino N, Eisenberg M, Erickson S. Accurate and sensitive detection of Salmonella in foods by engineered bacteriophages. Sci Rep. 2020;10(1):17463. https://doi.org/10.1038/s41598-020-74587-8.
Article CAS PubMed PubMed Central Google Scholar
Du M, Li J, Liu Q, Wang Y, Chen E, Kang F, Tu C. Rapid detection of trace Salmonella in milk using an effective pretreatment combined with droplet digital polymerase chain reaction. Microbiol Res. 2021;251:126838. https://doi.org/10.1016/j.micres.2021.126838.
Article CAS PubMed Google Scholar
Fathi S, Jalilzadeh N, Amini M, Shanebandi D, Baradaran B, Oroojalian F, Mokhtarzadeh A, Kesharwani P, Sahebkar A. Surface plasmon resonance-based oligonucleotide biosensor for Salmonella Typhi detection. Anal Biochem. 2023;677:115250. https://doi.org/10.1016/j.ab.2023.115250.
Article CAS PubMed Google Scholar
Zhang P, Wu XH, Su L, Wang HQ, Lin TF, Fang YP, Zhao HM, Lu WJ, Liu MJ, Liu WB, Zheng DW. Rapid, label-free prediction of antibiotic resistance in Salmonella typhimurium by surface-enhanced Raman spectroscopy. Int J Mol Sci. 2022;23:(3). https://doi.org/10.3390/ijms23031356.
Article CAS PubMed Central Google Scholar
Gheorghiu E. Detection of pathogenic bacteria by magneto-immunoassays: a review. J Biomed Res. 2020;35(4):277–83. https://doi.org/10.7555/JBR.34.20200123.
Article PubMed PubMed Central Google Scholar
Li X, Sun R, Pan J, Shi Z, An Z, Dai C, Lv J, Liu G, Liang H, Liu J, Lu Y, Zhang F, Liu Q. Rapid and on-site wireless immunoassay of respiratory virus aerosols via hydrogel-modulated resonators. Nat Commun. 2024;15(1):4035. https://doi.org/10.1038/s41467-024-48294-1.
Article CAS PubMed PubMed Central Google Scholar
Caceres DH, Chiller T, Lindsley MD. Immunodiagnostic assays for the investigation of fungal outbreaks. Mycopathologia. 2020;185(5):867–80. https://doi.org/10.1007/s11046-020-00452-x.
Alsulami T, Nath N, Flemming R, Wang H, Zhou W, Yu JH. Development of a novel homogeneous immunoassay using the engineered luminescent enzyme NanoLuc for the quantification of the mycotoxin fumonisin B1. Biosens Bioelectron. 2021;177:112939. https://doi.org/10.1016/j.bios.2020.112939.
Article CAS PubMed Google Scholar
Stanker LH, Hnasko RM. A double-sandwich ELISA for identification of monoclonal antibodies suitable for sandwich immunoassays. Methods Mol Biol. 2015;1318:69–78. https://doi.org/10.1007/978-1-4939-2742-5_7.
Kothari M, Wanjari A, Acharya S, Karwa V, Chavhan R, Kumar S, Kadu A, Patil R. A comprehensive review of monoclonal antibodies in modern medicine: tracing the evolution of a revolutionary therapeutic approach. Cureus. 2024;16(6):e61983. https://doi.org/10.7759/cureus.61983.
Article PubMed PubMed Central Google Scholar
Rodriguez S, Garcia-Garcia A, Garcia-Calvo E, Esteban V, Pastor-Vargas C, Diaz-Perales A, Garcia T, Martin R. Generation of an ovomucoid-immune scFv library for the development of novel immunoassays in hen’s egg detection. Foods. 2023;12(20):3831. https://doi.org/10.3390/foods12203831.
Article CAS PubMed PubMed Central Google Scholar
Guo M, Pang J, Wang Y, Bi C, Xu Z, Shen Y, Yang J, Wang H, Sun Y. Nanobodies-based colloidal gold immunochromatographic assay for specific detection of parathion. Anal Chim Acta. 2024;1310:342717. https://doi.org/10.1016/j.aca.2024.342717.
Article CAS PubMed Google Scholar
Zhao Y, Yang J, Niu Q, Wang J, Jing M, Guan G, Liu M, Luo J, Yin H, Liu Z. Identification and characterization of nanobodies from a phage display library and their application in an immunoassay for the sensitive detection of African swine fever virus. J Clin Microbiol. 2023;61(6):e0119722. https://doi.org/10.1128/jcm.01197-22.
Article CAS PubMed Google Scholar
Ren Y, Wei J, Wang Y, Wang P, Ji Y, Liu B, Wang J, Gonzalez-Sapienza G, Wang Y. Development of a streptavidin-bridged enhanced sandwich ELISA based on self-paired nanobodies for monitoring multiplex Salmonella serogroups. Anal Chim Acta. 2022;1203:339705. https://doi.org/10.1016/j.aca.2022.339705.
Article CAS PubMed Google Scholar
Prasad M, Ranjan K, Brar B, Shah I, Lalmbe U, Manimegalai J, Vashisht B, Gaury M, Kumar P, Khurana SK, Prasad G, Rawat J, Yadav V, Kumar S, Rao R. Virus-host interactions: new insights and advances in drug development against viral pathogens. Curr Drug Metab. 2017;18(10):942–70. https://doi.org/10.2174/1389200218666170925115132.
Article CAS PubMed Google Scholar
Gu Y, Guo Y, Deng Y, Song H, Nian R, Liu W. Development of a highly sensitive immunoassay based on pentameric nanobodies for carcinoembryonic antigen detection. Anal Chim Acta. 2023;1279:341840. https://doi.org/10.1016/j.aca.2023.341840.
Article CAS PubMed Google Scholar
Liang Y, Zeng Y, Luo L, Xu Z, Shen Y, Wang H, Hammock BD. Detection of acrylamide in foodstuffs by nanobody-based immunoassays. J Agric Food Chem. 2022;70(29):9179–86. https://doi.org/10.1021/acs.jafc.2c01872.
Article CAS PubMed PubMed Central Google Scholar
Teodori L, Ochoa SK, Omer M, Andersen VL, Bech P, Su J, Bridoux J, Nielsen JS, Bertelsen MB, Hernot S, Gothelf KV, Kjems J. Plug-and-play nucleic acid-mediated multimerization of biparatopic nanobodies for molecular imaging. Mol Ther Nucleic Acids. 2024;35(3):102305. https://doi.org/10.1016/j.omtn.2024.102305.
Article CAS PubMed PubMed Central Google Scholar
Deyev SM, Lebedenko EN. Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design. BioEssays. 2008;30(9):904–18. https://doi.org/10.1002/bies.20805.
Article CAS PubMed Google Scholar
Bao K, Liu X, Xu Q, Su B, Liu Z, Cao H, Chen Q. Nanobody multimerization strategy to enhance the sensitivity of competitive ELISA for detection of ochratoxin A in coffee samples. Food Control. 2021;127:108167. https://doi.org/10.1016/j.foodcont.2021.108167.
Fan K, Jiang B, Guan Z, He J, Yang D, Xie N, Nie G, Xie C, Yan X. Fenobody: a ferritin-displayed nanobody with high apparent affinity and half-life extension. Anal Chem. 2018;90(9):5671–7. https://doi.org/10.1021/acs.analchem.7b05217.
Article CAS PubMed Google Scholar
Yan T, Zhu J, Li Y, He T, Yang Y, Liu M. Development of a biotinylated nanobody for sensitive detection of aflatoxin B(1) in cereal via ELISA. Talanta. 2022;239:123125. https://doi.org/10.1016/j.talanta.2021.123125.
Comments (0)