Orachorn N, Klongklaew P, Bunkoed O. A composite of magnetic GOx@MOF incorporated in alginate hydrogel fiber adsorbent for the extraction of phthalate esters. Microchem J. 2021;171:106827. https://doi.org/10.1016/j.microc.2021.106827.
Wu Y, Zhou Q, Yuan Y, Wang H, Tong Y, Zhan Y, Sheng X, Sun Y, Zhou X. Enrichment and sensitive determination of phthalate esters in environmental water samples: a novel approach of MSPE-HPLC based on PAMAM dendrimers-functionalized magnetic-nanoparticles. Talanta. 2020;206:120213. https://doi.org/10.1016/j.talanta.2019.120213.
Article CAS PubMed Google Scholar
Sun M, Feng J, Ji X, Li C, Han S, Sun M, Feng Y, Feng J, Sun H. Polyaniline/titanium dioxide nanorods functionalized carbon fibers for in-tube solid-phase microextraction of phthalate esters prior to high performance liquid chromatography-diode array detection. J Chrom A. 2021;1642:462003. https://doi.org/10.1016/j.chroma.2021.462003.
Tong Y, Liu X, Zhang L. Green construction of Fe3O4@GC submicrocubes for highly sensitive magnetic dispersive solid-phase extraction of five phthalate esters in beverages and plastic bottles. Food Chem. 2019;277:579–85. https://doi.org/10.1016/j.foodchem.2018.11.021.
Article CAS PubMed Google Scholar
Wu Q, Song Y, Wang Q, Liu W, Hao L, Wang Z, Wang C. Combination of magnetic solid-phase extraction and HPLC-UV for simultaneous determination of four phthalate esters in plastic bottled juice. Food Chem. 2021;339:127855. https://doi.org/10.1016/j.foodchem.2020.127855.
Article CAS PubMed Google Scholar
Nurerk P, Chaowana R, Limbut W, Bunkoed O. A hierarchical composite adsorbent of cotton fibers modified with a hydrogel incorporating a metal organic framework and cetyl trimethyl ammonium bromide for the extraction and enrichment of phthalate esters. Microchem J. 2020;158:105220. https://doi.org/10.1016/j.microc.2020.105220.
Lu C, Tang Z, Gao X, Ma X, Liu C. Computer-aided design of magnetic dummy molecularly imprinted polymers for solid-phase extraction of ten phthalates from food prior to their determination by GC-MS/MS. Microchim Acta. 2018;185:373. https://doi.org/10.1007/s00604-018-2892-5.
Zhao Y, Zhu Z, Liu J, Liu J, Li G. Magnetic solid-phase extraction followed by HPLC–DAD for highly sensitive determination of phthalate esters in edible vegetable oils. Food Anal Methods. 2021;14:2375–85. https://doi.org/10.1007/s12161-021-02041-0.
Khongkla S, Phonchai A, Nurerk P, Bunkoed O. A hierarchical composite ZnO@carbon foam/PVA cryogel sorbent for the extraction and enrichment of parabens and synthetic phenolic antioxidant in fruit juice. Microchem J. 2022;173:107013. https://doi.org/10.1016/j.microc.2021.107013.
Wang X, Feng J, Tian Y, Li C, Ji X, Luo C, Sun M. Melamine-formaldehyde aerogel functionalized with polydopamine as in-tube solid-phase microextraction coating for the determination of phthalate esters. Talanta. 2019;199:317–23. https://doi.org/10.1016/j.talanta.2019.02.081.
Article CAS PubMed Google Scholar
Wang Y, Tong Y, Xu X, Zhang L. Developed magnetic multiporous 3D N-Co@C/HCF as efficient sorbent for the extraction of five trace phthalate esters. Anal Chim Acta. 2019;1054:176–83. https://doi.org/10.1016/j.aca.2018.12.046.
Article CAS PubMed Google Scholar
Phalipat P, Bunkoed O, Llompart M, Hongyok S, Nurerk P. Covalent organic framework composite hydrogel sorbent beads for vortex-assisted dispersive miniaturized solid phase extraction of parabens and synthetic phenolic antioxidants in foodstuffs. Microchem J. 2024;207:111873. https://doi.org/10.1016/j.microc.2024.111873.
Kori AH, Khan M, Soylak M. Metal organic framework composite (Ti3AlC2@ZIF-67) for vortex assisted solid phase extraction of lead from water and food samples. J Food Compos Anal. 2024;125:105810. https://doi.org/10.1016/j.jfca.2023.105810.
Jatkowska N. Alginate-based sorbents in miniaturized solid phase extraction techniques - step towards greenness sample preparation. TrAC Trends in Anal Chem. 2024;180:117893. https://doi.org/10.1016/j.trac.2024.117893.
Chumsud O, Jullakan S, Bunkoed O, Wattanasin P. A porous magnetic hydrogel-metal organic framework composite adsorbent for solvent-assisted magnetic solid-phase extraction and risk assessment of polycyclic aromatic hydrocarbons in food. J Food Compos Anal. 2024;135:106693. https://doi.org/10.1016/j.jfca.2024.106693.
Sillapawisut S, Bunkoed O, Llompart M, Nurerk P. In-syringe solid-phase extraction of polycyclic aromatic hydrocarbons using an iron–carboxylate metal–organic framework and hypercrosslinked polymer composite gelatin cryogel–modified cellulose acetate adsorbent. Microchim Acta. 2022;189:164. https://doi.org/10.1007/s00604-022-05276-8.
Detoni C, Gierlich CH, Rose M, Palkovits R. Selective liquid phase adsorption of 5-hydroxymethylfurfural on nanoporous hyper-cross-linked polymers. ACS Sustain Chem Eng. 2014;2:2407–15. https://doi.org/10.1021/sc5004264.
Liu W, Wang J, Liu J, Hou F, Wu Q, Wang C, Wang Z. Preparation of phenylboronic acid based hypercrosslinked polymers for effective adsorption of chlorophenols. J Chrom A. 2020;1628:461470. https://doi.org/10.1016/j.chroma.2020.461470.
Nurerk P, Sillapawisut S, Bunkoed O, Rongwong W, Llompart M. A monolith adsorbent of hyper-crosslinked polymer, graphene oxide composite chitosan cryogel for in-syringe solid phase extraction of furfural derivatives from cellulosic biomass hydrolysate. Microchem J. 2022;183:108056. https://doi.org/10.1016/j.microc.2022.108056.
Dong D, Zhang S, Huo W, Zhao M, Li J, Dong G, Zhao Y, Zhu M, Shi Z. Nitrogen-rich magnetic hyper-cross-linked polymer as an efficient adsorbent for tetracycline. J Environ Chem Eng. 2024;12:111948. https://doi.org/10.1016/j.jece.2024.111948.
Chen X, Chen X, Fu Y, Zhang J, Hu S, Luo H. Preparation and electrochemical characteristics of porous carbon composites originating from hyper-crosslinked polymers. J Energy Storage. 2023;73:108998. https://doi.org/10.1016/j.est.2023.108998.
Alloush AM, Abdulghani H, Amasha HA, Saleh TA, Hamouz OCS Al. Microwave-assisted synthesis of novel porous organic polymers for effective selective capture of CO2. J Ind Eng Chem. 2022;113:215–25. https://doi.org/10.1016/j.jiec.2022.05.049.
Ewis D, Hameed BH. A review on microwave-assisted synthesis of adsorbents and its application in the removal of water pollutants. J Water Process Eng. 2021;41:102006. https://doi.org/10.1016/j.jwpe.2021.102006.
Wang H, Gao H, Chen M, Xu X, Wang X, Pan C, Gao J. Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl Surf Sci. 2016;360:840–8. https://doi.org/10.1016/j.apsusc.2015.11.075.
Martín-Gómez B, Valverde S, Bernal J, Ares A. Development and validation of a new analytical method for the determination of plasticizers in bee pollen. Microchem J. 2024;205:111404. https://doi.org/10.1016/j.microc.2024.111404.
Khongkla S, Jullakan S, Saeaui S, Nurerk P, Kliangsuwan A, Bunkoed O. A composite zinc oxide and magnetic molecularly imprinted polymer hydrogel adsorbent for the extraction of sulfonamides in milk. Microchem J. 2023;191:108865. https://doi.org/10.1016/j.microc.2023.108865.
Jouki A, Rastegarzadeh S, Zendehdel M, Zargar B. Application of vortex-assisted solid-phase extraction for the simultaneous preconcentration of Cd(II) and Pb(II) by nano clinoptilolite modified with 5(p-dimethylaminobenzylidene) rhodanine. Anal Methods. 2019;11:3996–4005. https://doi.org/10.1039/C9AY01107B.
Yang R, Liu Y, Yan X, Liu S. Simultaneous extraction and determination of phthalate esters in aqueous solution by yolk-shell magnetic mesoporous carbon-molecularly imprinted composites based on solid-phase extraction coupled with gas chromatography–mass spectrometry. Talanta. 2016;161:114–21. https://doi.org/10.1016/j.talanta.2016.08.037.
Article CAS PubMed Google Scholar
Pinsrithong S, Bunkoed O. Hierarchical porous nanostructured polypyrrole-coated hydrogel beads containing reduced graphene oxide and magnetite nanoparticles for extraction of phthalates in bottled drinks. J Chrom A. 2018;1570:19–27. https://doi.org/10.1016/j.chroma.2018.07.074.
Qian H, Lin YL, Xu B, Wang LP, Gao ZC, Gao NY. Adsorption of haloforms onto GACs: effects of adsorbent properties and adsorption mechanisms. Chem Eng J. 2018;349:849–59. https://doi.org/10.1016/j.cej.2018.05.131.
Comments (0)