El-Seoud SA, Mohamed RF, Ghoneimy S. DNA computing: challenges and application. Int J Interact Mobile Technol (iJIM). 2017;11 (2). https://doi.org/10.3991/ijim.v11i2.6564.
Andrianova M, Kuznetsov A. Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel). 2020;13 (11). https://doi.org/10.3390/ph13110417.
Bauer M, Strom M, Hammond DS, Shigdar S. Anything You Can Do, I Can Do Better: can aptamers replace antibodies in clinical diagnostic applications? Molecules. 2019;24 (23). https://doi.org/10.3390/molecules24234377.
Wang H, Li M, Zhang H, Yang L. A tunable threshold colorimetric DNA logic gate for intuitive assessment of chemical contaminant exceedance. Anal Chem. 2024;96(29):11862–8. https://doi.org/10.1021/acs.analchem.4c01529.
Article CAS PubMed Google Scholar
Ward HH. Introduction to logic gates. Maker Innov Ser. 2023. https://doi.org/10.1007/978-1-4842-9878-7_1.
Asadi F. Logic Gates and Combinational Logic Circuits (2023). Synthesis lectures on electrical engineering. 2023.https://doi.org/10.1007/978-3-031-41516-6_2.
Huang Z, Wang D, Zhang Q, Zhang Y, Peng R, Tan W. Leveraging aptamer-based DNA nanotechnology for bioanalysis and cancer therapeutics. Acc Mater Res. 2024;5(4):438–52. https://doi.org/10.1021/accountsmr.3c00249.
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol. 2024;14:1402932. https://doi.org/10.3389/fcimb.2024.1402932.
Article CAS PubMed PubMed Central Google Scholar
Maradani BS, Parameswaran S, Subramanian K. Development of DNA aptamers targeting B7H3 by hybrid-SELEX: an alternative to antibodies for immuno-assays. Sci Rep. 2024;14 (1). https://doi.org/10.1038/s41598-024-64559-7.
Shang Y, Zhu L, Xiao Y, Du S, Ji R, Li B, Chen J, Deng S, Ren K. Logic gate activated lysosome targeting DNA nanodevice for controlled proteins degradation. Adv Funct Mater. 2023;34 (13). https://doi.org/10.1002/adfm.202311722.
Liu Y, Liu F, Li Z, Zhang X, Jing J. Creating a fluorescent “AND” logic gate aptamer platform for identifying exosomes derived from breast cancer subtypes. Dyes Pigments. 2025:112683. https://doi.org/10.1016/j.dyepig.2025.112683.
Xiong Z, Wang Q, Xie Y, Li N, Yun W, Yang L. Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine. Food Chem. 2021;338:128122. https://doi.org/10.1016/j.foodchem.2020.128122.
Article CAS PubMed Google Scholar
Kumar V, Raj SB, Kanakaraj L, Paul AD, Kavitha K, Ravi M, Sucharitha P. Aptamer: a review on it’s in vitro selection and drug delivery system. Int J Appl Pharm. 2022:35–42. https://doi.org/10.22159/ijap.2022v14i2.43594.
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22. https://doi.org/10.1038/346818a0.
Article CAS PubMed Google Scholar
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990–8–3;249 (4968). https://doi.org/10.1126/science.2200121.
Colon S, Paige A, Bolarinho R, Young H, Gerdon AE. Secondary structure of DNA aptamer influences biomimetic mineralization of calcium carbonate. ACS Appl Mater Interfaces. 2023;15(5):6274–82. https://doi.org/10.1021/acsami.2c15626.
Article CAS PubMed PubMed Central Google Scholar
Hou Y, Jia B, Sheng P, Liao X, Shi L, Fang L, Zhou L, Kong W. Aptasensors for mycotoxins in foods: recent advances and future trends. Compr Rev Food Sci Food Saf. 2022;21(2):2032–73. https://doi.org/10.1111/1541-4337.12858.
Article CAS PubMed Google Scholar
Lim HJ, Song H, Lee E, Lee J, Lee J, Yoon Y, Park M, Son A. Current trends of aptamer-based portable biosensing systems for the detection of environmental micropollutants: a review. Chem Eng J. 2024;500:157494. https://doi.org/10.1016/j.cej.2024.157494.
Guo L, Song Y, Yuan Y, Chen J, Liang H, Guo F, Yu Z, Liang P, Wang Y, Wang P. Identification of nucleic acid aptamers against lactate dehydrogenase via SELEX and high-throughput sequencing. Anal Bioanal Chem. 2021;413(17):4427–39. https://doi.org/10.1007/s00216-021-03397-2.
Article CAS PubMed PubMed Central Google Scholar
Kwon Y, Lee M, Kaushik NK, Yoo HY, Park C, Lee M-H, Lee T. Electrochemical cell-SELEX monitoring and its application to electrochemical aptasensor for colorectal cancer detection. Chem Eng J. 2025;506:159935. https://doi.org/10.1016/j.cej.2025.159935.
Lam SY, Lau HL, Kwok CK. Capture-SELEX: selection strategy, aptamer identification, and biosensing application. Biosensors (Basel). 2022;12 (12). https://doi.org/10.3390/bios12121142.
Shaukat A, Chrouda A, Sadaf S, Alhamlan F, Eissa S, Zourob M. Cell-SELEX for aptamer discovery and its utilization in constructing electrochemical biosensor for rapid and highly sensitive detection of Legionella pneumophila serogroup 1. Sci Rep. 2024;14(1):14132. https://doi.org/10.1038/s41598-024-65075-4.
Article CAS PubMed PubMed Central Google Scholar
Zhao L, Yang G, Zhu C, Li L, Zhao Y, Luan Y, Qu F. Three-step evolutionary enhanced capillary electrophoresis-SELEX for aptamer selection of exosome vesicles. Talanta. 2024;267:125203. https://doi.org/10.1016/j.talanta.2023.125203.
Article CAS PubMed Google Scholar
Chen J, Liu X, Xu M, Li Z, Xu D. Accomplishment of one-step specific PCR and evaluated SELEX process by a dual-microfluidic amplified system. Biomicrofluidics. 2021;15(2):024107. https://doi.org/10.1063/5.0045965.
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Li X, Huang A, Yan Z, Chen Y, Bie Z. PEI-assisted boronate affinity magnetic nanoparticle-based SELEX for efficient in vitro evolution of saponin-binding aptamers. RSC Adv. 2021;11(15):8775–81. https://doi.org/10.1039/d1ra00889g.
Article CAS PubMed PubMed Central Google Scholar
Jiang M, Fang X, Diao H, Lv S, Zhang Z, Zhang X, Chen Z, Luo Z. Semi-automated and efficient parallel SELEX of aptamers for multiple targets. Anal Methods. 2023;15(16):2039–43. https://doi.org/10.1039/d3ay00367a.
Article CAS PubMed Google Scholar
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int. 2024;24(1):108. https://doi.org/10.1186/s12935-024-03295-4.
Article PubMed PubMed Central Google Scholar
Oliveira R, Pinho E, Azevedo NF, Almeida C. Post-SELEX modifications with locked nucleic acids (LNA) of a SEA-specific DNA aptamer assisted by in silico modelling. Mol Syst Design Eng. 2024;9(8):847–55. https://doi.org/10.1039/d4me00043a.
Yan X, Chen H, Du G, Guo Q, Yuan Y, Yue T. Recent trends in fluorescent aptasensors for mycotoxin detection in food: principles, constituted elements, types, and applications. Food Front. 2022;3(3):428–52. https://doi.org/10.1002/fft2.144.
Hou X, Ga L, Zhang X, Ai J. Advances in the application of logic gates in nanozymes. Anal Bioanal Chem. 2024;416(27):5893–914. https://doi.org/10.1007/s00216-024-05240-w.
Article CAS PubMed Google Scholar
De S, Hechler M, Cheng M, Giesler H, Brandau S, Saccà B, Schlücker S. DNA-based AND logic gate as a molecular precision tool: selective recognition of protein pairs in lipid nanodiscs and subsequent binding of gold nanorods. 2024. https://doi.org/10.26434/chemrxiv-2024-dv0pj.
You M, Zhu G, Chen T, Donovan MJ, Tan W. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J Am Chem Soc. 2015;137(2):667–74. https://doi.org/10.1021/ja509263k.
Article CAS PubMed Google Scholar
Emanuelson C, Bardhan A, Deiters A. DNA logic gates for small molecule activation circuits in cells. ACS Synth Biol. 2024;13(2):538–45. https://doi.org/10.1021/acssynbio.3c00474.
Article CAS PubMed PubMed Central Google Scholar
Deng F, Pan J, Chen M, Liu Z, Chen J, Liu C. Integrating CRISPR-Cas12a with catalytic hairpin assembly as a logic gate biosensing platform for the detection of polychlorinated biphenyls in water samples. Sci Total Environ. 2023;881:163465. https://doi.org/10.1016/j.scitotenv.2023.163465.
Article CAS PubMed Google Scholar
Pan J, Deng F, Liu Z, Shi G, Chen J. Toehold-mediated cascade catalytic assembly for mycotoxin detection and its logic applications. Anal Chem. 2022;94(8):3693–700. https://doi.org/10.1021/acs.analchem.1c05485.
Article CAS PubMed Google Scholar
Lan Y, Wei Y, Wei Y, Wang L, Dong C. Versatile triple-output molecular logic gate for cysteine and silver (I) in foods and the environment based on I-motif DNA modulation. J Agric Food Chem. 2022;70(12):3608–17. https://doi.org/10.1021/acs.jafc.1c07469.
Comments (0)