Shuken SR. An introduction to mass spectrometry-based proteomics. J Proteome Res. 2023;22:2151–71. https://doi.org/10.1021/acs.jproteome.2c00838.
Article CAS PubMed Google Scholar
Rozanova S, Barkovits K, Nikolov M, Schmidt C, Urlaub H, Marcus K. Quantitative mass spectrometry-based proteomics: an overview. Methods Mol Biol Clifton NJ. 2021. https://doi.org/10.1007/978-1-0716-1024-4_8.
Oberg AL, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res. 2009;8:2144. https://doi.org/10.1021/pr8010099.
Article CAS PubMed Google Scholar
Karp NA, Lilley KS. Design and analysis issues in quantitative proteomics studies. Proteomics. 2007;7:42. https://doi.org/10.1002/pmic.200700683.
Article CAS PubMed Google Scholar
Dufault B, LeDuc RD, Zahedi RP. How to maximize power for differential expression analysis in discovery omics through experimental design. Expert Rev Proteomics. 2023;20:299. https://doi.org/10.1080/14789450.2023.2287054.
Article CAS PubMed Google Scholar
Choi H, Fermin D, Nesvizhskii AI. Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics. 2008. https://doi.org/10.1074/mcp.M800203-MCP200.
Article PubMed PubMed Central Google Scholar
Dai C, Füllgrabe A, Pfeuffer J, Solovyeva EM, Deng J, Moreno P, Kamatchinathan S, Kundu DJ, George N, Fexova S, Grüning B, Föll MC, Griss J, Vaudel M, Audain E, Locard-Paulet M, Turewicz M, Eisenacher M, Uszkoreit J, Van Den Bossche T, Schwämmle V, Webel H, Schulze S, Bouyssié D, Jayaram S, Duggineni VK, Samaras P, Wilhelm M, Choi M, Wang M, Kohlbacher O, Brazma A, Papatheodorou I, Bandeira N, Deutsch EW, Vizcaíno JA, Bai M, Sachsenberg T, Levitsky LI, Perez-Riverol Y. A proteomics sample metadata representation for multiomics integration and big data analysis. Nat Commun. 2021;12:5854. https://doi.org/10.1038/s41467-021-26111-3.
Article CAS PubMed PubMed Central Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.
Article CAS PubMed PubMed Central Google Scholar
Kohler D, Staniak M, Tsai T-H, Huang T, Shulman N, Bernhardt OM, MacLean BX, Nesvizhskii AI, Reiter L, Sabido E, Choi M, Vitek O. MSstats version 4.0: statistical analyses of quantitative mass spectrometry-based proteomic experiments with chromatography-based quantification at scale. J Proteome Res. 2023;22:1466. https://doi.org/10.1021/acs.jproteome.2c00834.
Article CAS PubMed PubMed Central Google Scholar
Ivanov MV, Kopeykina AS, Gorshkov MV. Reanalysis of DIA data demonstrates the capabilities of MS/MS-free proteomics to reveal new biological insights in disease-related samples. J Am Soc Mass Spectrom. 2024;35:1775. https://doi.org/10.1021/jasms.4c00134.
Article CAS PubMed Google Scholar
Prianichnikov N, Koch H, Koch S, Lubeck M, Heilig R, Brehmer S, Fischer R, Cox J. MaxQuant software for ion mobility enhanced shotgun proteomics. Mol Cell Proteomics MCP. 2020;19:1058. https://doi.org/10.1074/mcp.TIR119.001720.
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics MCP. 2014;13:2513. https://doi.org/10.1074/mcp.M113.031591.
Article CAS PubMed Google Scholar
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731. https://doi.org/10.1038/nmeth.3901.
Article CAS PubMed Google Scholar
Ivanov MV, Bubis JA, Gorshkov V, Tarasova IA, Levitsky LI, Solovyeva EM, Lipatova AV, Kjeldsen F, Gorshkov MV. DirectMS1Quant: ultrafast quantitative proteomics with MS/MS-free mass spectrometry. Anal Chem. 2022;94:13068. https://doi.org/10.1021/acs.analchem.2c02255.
Article CAS PubMed Google Scholar
Levitsky LI, Ivanov MV, Lobas AA, Bubis JA, Tarasova IA, Solovyeva EM, Pridatchenko ML, Gorshkov MV. IdentiPy: an extensible search engine for protein identification in shotgun proteomics. J Proteome Res. 2018;17:2249. https://doi.org/10.1021/acs.jproteome.7b00640.
Article CAS PubMed Google Scholar
Postoenko VI, Garibova LA, Levitsky LI, Bubis JA, Gorshkov MV, Ivanov MV. IQMMA: Efficient MS1 intensity extraction pipeline using multiple feature detection algorithms for DDA proteomics. J Proteome Res. 2023;22:2827. https://doi.org/10.1021/acs.jproteome.3c00075.
Article CAS PubMed Google Scholar
Van Puyvelde B, Daled S, Willems S, Gabriels R, Gonzalez de Peredo A, Chaoui K, Mouton-Barbosa E, Bouyssié D, Boonen K, Hughes CJ, Gethings LA, Perez-Riverol Y, Bloomfield N, Tate S, Schiltz O, Martens L, Deforce D, Dhaenens M. A comprehensive LFQ benchmark dataset on modern day acquisition strategies in proteomics. Sci Data. 2022;9:126. https://doi.org/10.1038/s41597-022-01216-6.
Article CAS PubMed PubMed Central Google Scholar
Adusumilli R, Mallick P. Data conversion with ProteoWizard msConvert. Methods Mol Biol Clifton NJ. 2017. https://doi.org/10.1007/978-1-4939-6747-6_23.
Abdrakhimov DA, Bubis JA, Gorshkov V, Kjeldsen F, Gorshkov MV, Ivanov MV. Biosaur: an open-source Python software for liquid chromatography-mass spectrometry peptide feature detection with ion mobility support. Rapid Commun Mass Spectrom RCM. 2021. https://doi.org/10.1002/rcm.9045.
Bouwmeester R, Gabriels R, Hulstaert N, Martens L, Degroeve S. DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nat Methods. 2021;18:1363. https://doi.org/10.1038/s41592-021-01301-5.
Article CAS PubMed Google Scholar
Teleman J, Chawade A, Sandin M, Levander F, Malmström J. Dinosaur: a refined open-source peptide MS feature detector. J Proteome Res. 2016;15:2143. https://doi.org/10.1021/acs.jproteome.6b00016.
Article CAS PubMed PubMed Central Google Scholar
Weisser H, Nahnsen S, Grossmann J, Nilse L, Quandt A, Brauer H, Sturm M, Kenar E, Kohlbacher O, Aebersold R, Malmström L. An automated pipeline for high-throughput label-free quantitative proteomics. J Proteome Res. 2013;12:1628. https://doi.org/10.1021/pr300992u.
Article CAS PubMed Google Scholar
Ivanov MV, Levitsky LI, Bubis JA, Gorshkov MV. Scavager: a versatile postsearch validation algorithm for shotgun proteomics based on gradient boosting. Proteomics. 2019;19:e1800280. https://doi.org/10.1002/pmic.201800280.
Article CAS PubMed Google Scholar
Zhang B, Pirmoradian M, Zubarev R, Käll L. Covariation of peptide abundances accurately reflects protein concentration differences. Mol Cell Proteomics MCP. 2017;16:936. https://doi.org/10.1074/mcp.O117.067728.
Article CAS PubMed Google Scholar
Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017;14:513. https://doi.org/10.1038/nmeth.4256.
Article CAS PubMed PubMed Central Google Scholar
Yu F, Haynes SE, Nesvizhskii AI. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol Cell Proteomics MCP. 2021;20:100077. https://doi.org/10.1016/j.mcpro.2021.100077.
Article CAS PubMed Google Scholar
Lim MY, Paulo JA, Gygi SP. Evaluating false transfer rates from the match-between-runs algorithm with a two-proteome model. J Proteome Res. 2019;18:4020. https://doi.org/10.1021/acs.jproteome.9b00492.
Article CAS PubMed PubMed Central Google Scholar
Solivais AJ, Boekweg H, Smith LM, Noble WS, Shortreed MR, Payne SH, Keich U. Improved detection of differentially abundant proteins through FDR-control of peptide-identity-propagation. BioRxiv Prepr Serv Biol. 2024. https://doi.org/10.1101/2024.11.15.623880.
Comments (0)