On the question of correct use of replicates in quantitative label-free proteomics

Shuken SR. An introduction to mass spectrometry-based proteomics. J Proteome Res. 2023;22:2151–71. https://doi.org/10.1021/acs.jproteome.2c00838.

Article  CAS  PubMed  Google Scholar 

Rozanova S, Barkovits K, Nikolov M, Schmidt C, Urlaub H, Marcus K. Quantitative mass spectrometry-based proteomics: an overview. Methods Mol Biol Clifton NJ. 2021. https://doi.org/10.1007/978-1-0716-1024-4_8.

Oberg AL, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res. 2009;8:2144. https://doi.org/10.1021/pr8010099.

Article  CAS  PubMed  Google Scholar 

Karp NA, Lilley KS. Design and analysis issues in quantitative proteomics studies. Proteomics. 2007;7:42. https://doi.org/10.1002/pmic.200700683.

Article  CAS  PubMed  Google Scholar 

Dufault B, LeDuc RD, Zahedi RP. How to maximize power for differential expression analysis in discovery omics through experimental design. Expert Rev Proteomics. 2023;20:299. https://doi.org/10.1080/14789450.2023.2287054.

Article  CAS  PubMed  Google Scholar 

Choi H, Fermin D, Nesvizhskii AI. Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics. 2008. https://doi.org/10.1074/mcp.M800203-MCP200.

Article  PubMed  PubMed Central  Google Scholar 

Dai C, Füllgrabe A, Pfeuffer J, Solovyeva EM, Deng J, Moreno P, Kamatchinathan S, Kundu DJ, George N, Fexova S, Grüning B, Föll MC, Griss J, Vaudel M, Audain E, Locard-Paulet M, Turewicz M, Eisenacher M, Uszkoreit J, Van Den Bossche T, Schwämmle V, Webel H, Schulze S, Bouyssié D, Jayaram S, Duggineni VK, Samaras P, Wilhelm M, Choi M, Wang M, Kohlbacher O, Brazma A, Papatheodorou I, Bandeira N, Deutsch EW, Vizcaíno JA, Bai M, Sachsenberg T, Levitsky LI, Perez-Riverol Y. A proteomics sample metadata representation for multiomics integration and big data analysis. Nat Commun. 2021;12:5854. https://doi.org/10.1038/s41467-021-26111-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohler D, Staniak M, Tsai T-H, Huang T, Shulman N, Bernhardt OM, MacLean BX, Nesvizhskii AI, Reiter L, Sabido E, Choi M, Vitek O. MSstats version 4.0: statistical analyses of quantitative mass spectrometry-based proteomic experiments with chromatography-based quantification at scale. J Proteome Res. 2023;22:1466. https://doi.org/10.1021/acs.jproteome.2c00834.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanov MV, Kopeykina AS, Gorshkov MV. Reanalysis of DIA data demonstrates the capabilities of MS/MS-free proteomics to reveal new biological insights in disease-related samples. J Am Soc Mass Spectrom. 2024;35:1775. https://doi.org/10.1021/jasms.4c00134.

Article  CAS  PubMed  Google Scholar 

Prianichnikov N, Koch H, Koch S, Lubeck M, Heilig R, Brehmer S, Fischer R, Cox J. MaxQuant software for ion mobility enhanced shotgun proteomics. Mol Cell Proteomics MCP. 2020;19:1058. https://doi.org/10.1074/mcp.TIR119.001720.

Article  PubMed  Google Scholar 

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics MCP. 2014;13:2513. https://doi.org/10.1074/mcp.M113.031591.

Article  CAS  PubMed  Google Scholar 

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731. https://doi.org/10.1038/nmeth.3901.

Article  CAS  PubMed  Google Scholar 

Ivanov MV, Bubis JA, Gorshkov V, Tarasova IA, Levitsky LI, Solovyeva EM, Lipatova AV, Kjeldsen F, Gorshkov MV. DirectMS1Quant: ultrafast quantitative proteomics with MS/MS-free mass spectrometry. Anal Chem. 2022;94:13068. https://doi.org/10.1021/acs.analchem.2c02255.

Article  CAS  PubMed  Google Scholar 

Levitsky LI, Ivanov MV, Lobas AA, Bubis JA, Tarasova IA, Solovyeva EM, Pridatchenko ML, Gorshkov MV. IdentiPy: an extensible search engine for protein identification in shotgun proteomics. J Proteome Res. 2018;17:2249. https://doi.org/10.1021/acs.jproteome.7b00640.

Article  CAS  PubMed  Google Scholar 

Postoenko VI, Garibova LA, Levitsky LI, Bubis JA, Gorshkov MV, Ivanov MV. IQMMA: Efficient MS1 intensity extraction pipeline using multiple feature detection algorithms for DDA proteomics. J Proteome Res. 2023;22:2827. https://doi.org/10.1021/acs.jproteome.3c00075.

Article  CAS  PubMed  Google Scholar 

Van Puyvelde B, Daled S, Willems S, Gabriels R, Gonzalez de Peredo A, Chaoui K, Mouton-Barbosa E, Bouyssié D, Boonen K, Hughes CJ, Gethings LA, Perez-Riverol Y, Bloomfield N, Tate S, Schiltz O, Martens L, Deforce D, Dhaenens M. A comprehensive LFQ benchmark dataset on modern day acquisition strategies in proteomics. Sci Data. 2022;9:126. https://doi.org/10.1038/s41597-022-01216-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adusumilli R, Mallick P. Data conversion with ProteoWizard msConvert. Methods Mol Biol Clifton NJ. 2017. https://doi.org/10.1007/978-1-4939-6747-6_23.

Abdrakhimov DA, Bubis JA, Gorshkov V, Kjeldsen F, Gorshkov MV, Ivanov MV. Biosaur: an open-source Python software for liquid chromatography-mass spectrometry peptide feature detection with ion mobility support. Rapid Commun Mass Spectrom RCM. 2021. https://doi.org/10.1002/rcm.9045.

Bouwmeester R, Gabriels R, Hulstaert N, Martens L, Degroeve S. DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nat Methods. 2021;18:1363. https://doi.org/10.1038/s41592-021-01301-5.

Article  CAS  PubMed  Google Scholar 

Teleman J, Chawade A, Sandin M, Levander F, Malmström J. Dinosaur: a refined open-source peptide MS feature detector. J Proteome Res. 2016;15:2143. https://doi.org/10.1021/acs.jproteome.6b00016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weisser H, Nahnsen S, Grossmann J, Nilse L, Quandt A, Brauer H, Sturm M, Kenar E, Kohlbacher O, Aebersold R, Malmström L. An automated pipeline for high-throughput label-free quantitative proteomics. J Proteome Res. 2013;12:1628. https://doi.org/10.1021/pr300992u.

Article  CAS  PubMed  Google Scholar 

Ivanov MV, Levitsky LI, Bubis JA, Gorshkov MV. Scavager: a versatile postsearch validation algorithm for shotgun proteomics based on gradient boosting. Proteomics. 2019;19:e1800280. https://doi.org/10.1002/pmic.201800280.

Article  CAS  PubMed  Google Scholar 

Zhang B, Pirmoradian M, Zubarev R, Käll L. Covariation of peptide abundances accurately reflects protein concentration differences. Mol Cell Proteomics MCP. 2017;16:936. https://doi.org/10.1074/mcp.O117.067728.

Article  CAS  PubMed  Google Scholar 

Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017;14:513. https://doi.org/10.1038/nmeth.4256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu F, Haynes SE, Nesvizhskii AI. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol Cell Proteomics MCP. 2021;20:100077. https://doi.org/10.1016/j.mcpro.2021.100077.

Article  CAS  PubMed  Google Scholar 

Lim MY, Paulo JA, Gygi SP. Evaluating false transfer rates from the match-between-runs algorithm with a two-proteome model. J Proteome Res. 2019;18:4020. https://doi.org/10.1021/acs.jproteome.9b00492.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solivais AJ, Boekweg H, Smith LM, Noble WS, Shortreed MR, Payne SH, Keich U. Improved detection of differentially abundant proteins through FDR-control of peptide-identity-propagation. BioRxiv Prepr Serv Biol. 2024. https://doi.org/10.1101/2024.11.15.623880.

Comments (0)

No login
gif