Boune S, Hu P, Epstein AL. Principles of N-linked glycosylation variations of IgG-based therapeutics: pharmacokinetic and functional considerations. Antibodies. 2020;9(2):22. https://doi.org/10.3390/antib9020022.
Article CAS PubMed PubMed Central Google Scholar
Tao MH, Morrison SL. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol. 1989;143:2595–601.
Article CAS PubMed Google Scholar
Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SHA, Presta LG. Lack of fucose on human IGG1 N-linked oligosaccharide improves binding to human FCΓRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277:26733–40. https://doi.org/10.1074/jbc.m202069200.
Article CAS PubMed Google Scholar
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody structure and function: the basis for engineering therapeutics. Antibodies. 2019;8:55. https://doi.org/10.3390/antib8040055.
Article CAS PubMed PubMed Central Google Scholar
Kwiatkowski A, Co C, Kameoka S, Zhang A, Coughlin J, Cameron T, Chiao E, Bergelson S, Mason CS. Assessment of the role of afucosylated glycoforms on the in vitro antibody-dependent phagocytosis activity of an antibody to Aβ aggregates. MAbs. 2020;12(1):1803645. https://doi.org/10.1080/19420862.2020.1803645.
Article CAS PubMed PubMed Central Google Scholar
Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J of Pharm Sci. 2015;104:1866–84.
Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21:949–59. https://doi.org/10.1093/glycob/cwr027.
Article CAS PubMed Google Scholar
Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995;230:229–38. https://doi.org/10.1006/abio.1995.1468.
Article CAS PubMed Google Scholar
Guttman A, Chen FTA, Evangelista RA, Cooke N. High-resolution capillary gel electrophoresis of reducing oligosaccharides labeled with 1-aminopyrene-3,6,8-trisulfonate. Anal Biochem. 1996;233:234–42. https://doi.org/10.1006/abio.1996.0034.
Article CAS PubMed Google Scholar
Ruhaak RL, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397:3457–81.
Article CAS PubMed PubMed Central Google Scholar
Zhang Q, Li H, Feng X, Liu B-F, Liu X. Purification of derivatized oligosaccharides by solid phase extraction for glycomic analysis. PLoS ONE. 2014;9(4):e94232. https://doi.org/10.1371/journal.pone.0094232.
Article CAS PubMed PubMed Central Google Scholar
Neville DCA, Coquard V, Priestman DA, Vruchte DJMT, Sillence DJ, Dwek RA, Platt FM, Butters TD. Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling. Anal Biochem. 2004;331:275–82. https://doi.org/10.1016/j.ab.2004.03.051.
Article CAS PubMed Google Scholar
Prater DB, Anumula RK, Hitchins TJ. Automated sample preparation facilitated by PhyNexus MEA purification system for oligosaccharide mapping of glycoproteins. Anal Biochem. 2007;369:202–9.
Article CAS PubMed Google Scholar
Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC). A powerful separation technique. Anal Bioanal Chem. 2012;402:231–47.
Article CAS PubMed Google Scholar
Sutton BJ, Phillips DC. The three-dimensional structure of the carbohydrate within the Fc fragment of immunoglobulin G. Biochem Soc Trans. 1983;11:130–2. https://doi.org/10.1042/bst0110130.
Article CAS PubMed Google Scholar
Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem. 1996;240:210–26. https://doi.org/10.1006/abio.1996.0351.
Article CAS PubMed Google Scholar
Tarentino AL, Gomez CM, Plummer TH. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochem. 1985;24:4665–71. https://doi.org/10.1021/bi00338a028.
Wing GB, Hunnam V, Reinkensmeier G, Andersson U, Harvey DJ, Dwek RA, Platt FM, Butters TD. High-performance liquid chromatography analysis of ganglioside carbohydrates at the picomole level after ceramide glycanase digestion and fluorescent labeling with 2-aminobenzamide. Anal Biochem. 2001;298:207–17. https://doi.org/10.1006/abio.2001.5393.
Article CAS PubMed Google Scholar
Varadi C, Lew C, Guttman A. Rapid magnetic bead based sample preparation for automated and high throughput N-glycan analysis of therapeutic antibodies. Anal Chem. 2014;86:5682–7.
Article CAS PubMed Google Scholar
Helali Y, Bourez A, Marchant A, Heyden VY, Antwerpen VP, Delporte CA. Development and validation of online SPE purification coupled to HILIC-fluorescence-MS analysis for the characterization of N-glycans. Talanta. 2024;270:125541.
Article CAS PubMed Google Scholar
Marie A-L, Ray S, Ivanov AR. Highly-sensitive label-free deep profiling of N-glycans released from biomedically-relevant samples. Nature Comm. 2023;14:1616. https://doi.org/10.1038/s41467-023-37365-4.
Fowowe M, Yu A, Wang J, Onigbinde S, Nwaiwu J, Bennett IA, Mechref Y. Suppressing the background of LC–ESI–MS analysis of permethylated glycans using the active background ion reduction device. Electrophoresis. 2024;45:1469–78.
Kim W, Kim J, You S, Do J, Jang Y, Kim D, Lee J, Ha J, Kim KH. Qualitative and quantitative characterization of sialylated N-glycans using three fluorophores, two columns, and two instrumentations. Anal Biochem. 2019;571:40–8.
Comments (0)