Scott S, Ali Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines (Basel). 2021;12:319. https://doi.org/10.3390/mi12030319.
Kumar S, Kumar S, Ali MdA, Anand P, Agrawal VV, John R, Maji S, Malhotra BD. Microfluidic-integrated biosensors: Prospects for point-of-care diagnostics. Biotechnol J. 2013;8:1267–79. https://doi.org/10.1002/biot.201200386.
Article PubMed CAS Google Scholar
Zhao H, Zhang Y, Hua D. A Review of Research Progress in Microfluidic Bioseparation and Bioassay. Micromachines (Basel). 2024;15:893. https://doi.org/10.3390/mi15070893.
Niculescu A-G, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci. 2021;22:2011. https://doi.org/10.3390/ijms22042011.
Article PubMed PubMed Central CAS Google Scholar
Faustino V, Catarino SO, Lima R, Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J Biomech. 2016;49:2280–92. https://doi.org/10.1016/j.jbiomech.2015.11.031.
Jung W, Han J, Choi J-W, Ahn CH. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng. 2015;132:46–57. https://doi.org/10.1016/j.mee.2014.09.024.
He Y, Wu Y, Fu J-Z, Wu W-B. Fabrication of paper-based microfluidic analysis devices: a review. RSC Adv. 2015;5:78109–27. https://doi.org/10.1039/C5RA09188H.
Elvira KS, Gielen F, Tsai SSH, Nightingale AM. Materials and methods for droplet microfluidic device fabrication. Lab Chip. 2022;22:859–75. https://doi.org/10.1039/D1LC00836F.
Article PubMed PubMed Central CAS Google Scholar
Aralekallu S, Boddula R, Singh V. Development of glass-based microfluidic devices: A review on its fabrication and biologic applications. Mater Des. 2023;225:111517. https://doi.org/10.1016/j.matdes.2022.111517.
Dinh THN, Cao HH, Hamdi FS, Couty M, Martincic E, Woytasik M, Dufour-Gergam E. Development of reversible bonding for microfluidic applications. Microfluid Nanofluidics. 2015;19:751–6. https://doi.org/10.1007/s10404-015-1599-8.
Anwar K, Han T, Kim SM. Reversible sealing techniques for microdevice applications. Sens Actuators B Chem. 2011;153:301–11. https://doi.org/10.1016/j.snb.2010.11.002.
Sivakumar R, Lee NY. Microfluidic device fabrication mediated by surface chemical bonding. Analyst. 2020;145:4096–110. https://doi.org/10.1039/D0AN00614A.
Article PubMed CAS Google Scholar
Smith S, Sypabekova M, Kim S. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication. Biosensors (Basel). 2024;14:249. https://doi.org/10.3390/bios14050249.
Article PubMed CAS Google Scholar
Tsao C-W, Syu W-C. Bonding of thermoplastic microfluidics by using dry adhesive tape. RSC Adv. 2020;10:30289–96. https://doi.org/10.1039/D0RA05876A.
Article PubMed PubMed Central CAS Google Scholar
Shahriari S, Patel V, Selvaganapathy PR. Xurography as a tool for fabrication of microfluidic devices. J Micromech Microeng. 2023;33:083002. https://doi.org/10.1088/1361-6439/ace05d.
Martínez-López J, Mojica M, Rodríguez C, Siller H. Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers. Sensors. 2016;16:705. https://doi.org/10.3390/s16050705.
Article PubMed PubMed Central Google Scholar
Bartholomeusz DA, Boutte RW, Andrade JD. Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst. 2005;14:1364–74. https://doi.org/10.1109/JMEMS.2005.859087.
Speller NC, Morbioli GG, Cato ME, Cantrell TP, Leydon EM, Schmidt BE, Stockton AM. Cutting edge microfluidics: Xurography and a microwave. Sens Actuators B Chem. 2019;291:250–6. https://doi.org/10.1016/j.snb.2019.04.004.
Gosset A, Durrieu C, Renaud L, Deman A-L, Barbe P, Bayard R, Chateaux J-F. Xurography-based microfluidic algal biosensor and dedicated portable measurement station for online monitoring of urban polluted samples. Biosens Bioelectron. 2018;117:669–77. https://doi.org/10.1016/j.bios.2018.07.005.
Article PubMed CAS Google Scholar
Gao K, Liu J, Fan Y, Zhang Y. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation. Biomed Microdevices. 2019;21:83. https://doi.org/10.1007/s10544-019-0433-6.
Article PubMed CAS Google Scholar
Khan Malek CG. Laser processing for bio-microfluidics applications (part II). Anal Bioanal Chem. 2006;385:1362–9. https://doi.org/10.1007/s00216-006-0517-z.
Article PubMed CAS Google Scholar
Becker H, Gärtner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 2000;21:12–26. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1%3c12::AID-ELPS12>3.0.CO;2-7.
Article PubMed CAS Google Scholar
Nath P, Maity TS, Pettersson F, Resnick J, Kunde Y, Kraus N, Castano N. Polymerase chain reaction compatibility of adhesive transfer tape based microfluidic platforms. Microsyst Technol. 2014;20:1187–93. https://doi.org/10.1007/s00542-013-1901-1.
Notomi T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:63e–63. https://doi.org/10.1093/nar/28.12.e63.
Estrela PFN, dos Santos CA, Resende PC, Lima PM, da Silva T dos SC, Saboia-Vahia L, Siqueira MM, Silveira-Lacerda E de P, Duarte GRM. Fast, low-cost and highly specific colorimetric RT-LAMP assays for inference of SARS-CoV-2 Omicron BA.1 and BA.2 lineages. Analyst. 2022;147:5613–5622. https://doi.org/10.1039/D2AN01625G.
dos Santos C, de Oliveira K, Mendes G, Silva L, de Souza Jr. M, Estrela PF, Guimarães R, Silveira-Lacerda E, Duarte G (2021) Detection of SARS-CoV-2 in saliva by RT-LAMP during a screening of workers in Brazil, including pre-symptomatic carriers. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20210098
Silva LdC, dos Santos CA, Mendes GdM, Oliveira KGd, de Souza Júnior MN, Estrela PFN, Costa SHN, Silveira-Lacerda EdP, Duarte GRM. Can a field molecular diagnosis be accurate? A performance evaluation of colorimetric RT-LAMP for the detection of SARS-CoV-2 in a hospital setting. Anal Methods. 2021;13:2898–2907. https://doi.org/10.1039/D1AY00481F.
Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-based Point-of-Care Testing (POCT) devices in dealing with waves of COVID-19 pandemic: the emerging solution. ACS Appl Bio Mater. 2021. https://doi.org/10.1021/acsabm.1c01320.
de Oliveira KG, Estrela PFN, Mendes G de M, dos Santos CA, Silveira-Lacerda E de P, Duarte GRM. Rapid molecular diagnostics of COVID-19 by RT-LAMP in a centrifugal polystyrene-toner based microdevice with end-point visual detection. Analyst. 2021;146:1178–1187. https://doi.org/10.1039/D0AN02066D
Gimenez TD, Bailão AM, de Almeida Soares CM, Fiaccadori FS, Borges de Lima Dias e Souza M, Duarte GRM. Dynamic solid-phase RNA extraction from a biological sample in a polyester-toner based microchip. Anal Methods. 2017;9:2116–2121. https://doi.org/10.1039/C6AY03481K
Lamb LE, Bartolone SN, Ward E, Chancellor MB. Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. PLoS ONE. 2020;15:e0234682. https://doi.org/10.1371/journal.pone.0234682.
Article PubMed PubMed Central CAS Google Scholar
Duarte GRM, Price CW, Augustine BH, Carrilho E, Landers JP. Dynamic Solid Phase DNA Extraction and PCR Amplification in Polyester-Toner Based Microchip. Anal Chem. 2011;83:5182–9. https://doi.org/10.1021/ac200292m.
Article PubMed CAS Google Scholar
Jackson KR, Borba JC, Meija M, Mills DL, Haverstick DM, Olson KE, Aranda R, Garner GT, Carrilho E, Landers JP. DNA purification using dynamic solid-phase extraction on a rotationally-driven polyethylene-terephthalate microdevice. Anal Chim Acta. 2016;937:1–10. https://doi.org/10.1016/j.aca.2016.06.036.
Article PubMed CAS Google Scholar
Van Nguyen H, Seo TS. High-throughput human DNA purification on a centrifugal microfluidic device for rapid forensic sex-typing. Biosens Bioelectron. 2021;181:113161. https://doi.org/10.1016/j.bios.2021.113161.
Article PubMed CAS Google Scholar
Kleiboeker S, Cowden S, Grantham J, Nutt J, Tyler A, Berg A, Altrich M. SARS-CoV-2 viral load assessment in respiratory samples. J Clin Virol. 2020;129:104439. https://doi.org/10.1016/j.jcv.2020.104439.
Comments (0)