Genome-wide association study of Fuchs’ endothelial corneal dystrophy in the German population

Afshari NA, Robert P, Igo Jr NJ, Morris D, Stambolian S, Sharma VL, Pulagam S, Dunn et al (2017) Genome-Wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat Commun. https://doi.org/10.1038/ncomms14898

Article  PubMed  PubMed Central  Google Scholar 

Bachmann B, Schrittenlocher S, Matthaei M, Siebelmann S, Cursiefen C (2019) „Descemet membrane endothelial keratoplasty in komplexen augen. Der Ophthalmologe 116(3):228–235. https://doi.org/10.1007/s00347-018-0818-6

Article  CAS  PubMed  Google Scholar 

Baratz KH, Tosakulwong N, Ryu E, Brown WL, Branham K, Chen W, Tran KD et al (2010) E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med 363(11):1016–1024. https://doi.org/10.1056/nejmoa1007064

Article  CAS  PubMed  Google Scholar 

Benner C, Chris CA, Spencer AS, Havulinna V, Salomaa S, Ripatti, Pirinen M (2016) FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 2016;32(10):1493–1501. https://doi.org/10.1093/BIOINFORMATICS/BTW018

Biswas S (2001) Missense mutations in COL8A2, the gene encoding the Alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet 10(21):2415–2423. https://doi.org/10.1093/hmg/10.21.2415

Article  CAS  PubMed  Google Scholar 

Brockmann T, Brockmann C, Maier A-K, Schroeter J, Pleyer U, Bertelmann E, Joussen AM, and Necip Torun (2014) Clinicopathology of graft detachment after Descemet’s membrane endothelial keratoplasty. Acta Ophthalmol 92(7):e556–e561. https://doi.org/10.1111/aos.12419

Article  PubMed  Google Scholar 

Brockmann T, Brockmann C, Maier A-K, Gundlach E, Schroeter J, Bertelmann E, Joussen AM, and Necip Torun (2015) Descemet membrane endothelial keratoplasty for graft failure after Descemet stripping endothelial keratoplasty: clinical results and histopathologic findings. JAMA Ophthalmol 133(7):813–819. https://doi.org/10.1001/jamaophthalmol.2015.0906

Article  PubMed  Google Scholar 

Brockmann T, Brockmann C, Anna-Karina B, Maier J, Schroeter E, Bertelmann, and Necip Torun (2018) Primary Descemet’s membrane endothelial keratoplasty for Fuchs endothelial dystrophy versus bullous keratopathy: histopathology and clinical results. Curr Eye Res 43(10):1221–1227. https://doi.org/10.1080/02713683.2018.1490773

Article  CAS  PubMed  Google Scholar 

Brockmann T, Pilger D, Brockmann C, Anna-Karina B, Maier E, Bertelmann, and Necip Torun (2019) Predictive factors for clinical outcomes after primary Descemet’s membrane endothelial keratoplasty for Fuchs’ endothelial dystrophy. Curr Eye Res 44(2):147–153. https://doi.org/10.1080/02713683.2018.1538459

Article  PubMed  Google Scholar 

Choi S-H, Koh D-I, Ahn H, Kim JY, Kim Y, and Man-Wook Hur (2020) Cell fate decisions by C-Myc depend on ZBTB5 and P53. Biochem Biophys Res Commun 533(4):1247–1254. https://doi.org/10.1016/j.bbrc.2020.09.137

Article  CAS  PubMed  Google Scholar 

Choquet Hélène, Thai KK, Yin J, Hoffmann TJ, Kvale MN, Banda Y, Schaefer C et al (2017) A large Multi-Ethnic Genome-Wide association study identifies novel genetic loci for intraocular pressure. Nat Commun 8(1):2108. https://doi.org/10.1038/s41467-017-01913-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dean L (2012) Pitt-Hopkins Syndrome. Medical Genetics Summaries. http://www.ncbi.nlm.nih.gov/pubmed/23640545

del Buey Mari´aA, Cristo´bal Jose´A, Francisco J, Ascaso LL, and Elena Lanchares (2009) Biomechanical properties of the cornea in Fuchs’ corneal dystrophy. Invest Opthalmology Visual Sci 50(7):3199. https://doi.org/10.1167/iovs.08-3312

Article  Google Scholar 

Dwivedi DJ, Giuseppe F, Pontoriero RA-P, Sullivan S, Williams T, West-Mays JA (2005) Targeted deletion of AP-2 α leads to disruption in corneal epithelial cell integrity and defects in the corneal stroma. Invest Opthalmology Visual Sci 46(10):3623. https://doi.org/10.1167/iovs.05-0028

Article  Google Scholar 

Ebert AM, Sarah J, Childs CL, Hehr, Paula B, Cechmanek, and Sarah McFarlane (2014) Sema6a and Plxna2 mediate spatially regulated repulsion within the developing eye to promote eye vesicle cohesion. Development 141(12):2473–2482. https://doi.org/10.1242/dev.103499

Article  CAS  PubMed  Google Scholar 

Eghrari AO, Vahedi S, Afshari NA, Amer Riazuddin S, Gottsch JD (2017) CTG18.1 expansion in TCF4 among African Americans with Fuchs’ corneal dystrophy. Invest Ophthalmol Visual Sci 58(14):6046–6049. https://doi.org/10.1167/iovs.17-21661

Article  CAS  Google Scholar 

Fautsch MP, Wieben ED, Keith H, Baratz N, Bhattacharyya, Amanda N, Sadan NJ, Hafford-Tear SJ, Tuft, Davidson AE (2021) TCF4-Mediated Fuchs endothelial corneal dystrophy: insights into a common trinucleotide Repeat-Associated disease. Prog Retin Eye Res 81(March). https://doi.org/10.1016/j.preteyeres.2020.100883

Flockerzi E, Maier P, Böhringer D, Reinshagen H, Kruse F, Cursiefen C, Reinhard T, Geerling G, Necip Torun, and, Seitz B (2018) Trends in corneal transplantation from 2001 to 2016 in Germany: A report of the DOG–Section cornea and its keratoplasty registry. Am J Ophthalmol 188(April):91–98. https://doi.org/10.1016/j.ajo.2018.01.018

Article  PubMed  Google Scholar 

Foja S, Luther M, Hoffmann K, Rupprecht A, Gruenauer-Kloevekorn C (2017) CTG18.1 repeat expansion May reduce TCF4 gene expression in corneal endothelial cells of German patients with Fuchs’ dystrophy. Graefe’s Archive Clin Experimental Ophthalmol 255(8):1621–1631. https://doi.org/10.1007/s00417-017-3697-7

Article  CAS  Google Scholar 

Fuchs E (1910) Dystrophia epithelialis corneae. Albrecht Von Græfe’s Archiv Für Ophthalmologie 76(3):478–508. https://doi.org/10.1007/BF01986362

Article  Google Scholar 

Gain P, Jullienne Rémy, He Z, Aldossary M, Acquart S, Cognasse F, and Gilles Thuret (2016) Global survey of corneal transplantation and eye banking. JAMA Ophthalmol 134(2):167. https://doi.org/10.1001/jamaophthalmol.2015.4776

Article  PubMed  Google Scholar 

Gottsch JD, Sundin OH, Liu SH, Jun AS, Broman KW, Stark WJ, Vito ECL, Narang AK, Thompson JM, Magovern M (2005) Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of fuchs corneal dystrophy. Invest Ophthalmol Vis Sci 46(6):1934. https://doi.org/10.1167/iovs.04-0937

Gurrapu S, and Luca Tamagnone (2016) Transmembrane semaphorins: multimodal signaling cues in development and Cancer. Cell Adhes Migr 10(6):675–691. https://doi.org/10.1080/19336918.2016.1197479

Article  CAS  Google Scholar 

He W, Han X, Ong J-S, Hewitt AW, Mackey DA, Gharahkhani P, Stuart MacGregor, and International Glaucoma Genetics Consortium (2022) Association of novel loci with keratoconus susceptibility in a Multitrait Genome-Wide association study of the UK biobank database and Canadian longitudinal study on aging. JAMA Ophthalmol 140(6):568–576. https://doi.org/10.1001/jamaophthalmol.2022.0891

Article  PubMed  PubMed Central  Google Scholar 

Ivarsdottir EV, Stefania Benonisdottir G, Thorleifsson P, Sulem A, Oddsson U, Styrkarsdottir S, Kristmundsdottir et al (2019) Sequence variation at ANAPC1 accounts for 24% of the variability in corneal endothelial cell density. Nat Commun 10(1):1284. https://doi.org/10.1038/s41467-019-09304-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang X, Dellepiane N, Pairo-Castineira E, Boutin T, Kumar Y, Bickmore WA, and Veronique Vitart (2020) Fine-Mapping and Cell-Specific enrichment at corneal resistance factor loci prioritize candidate causal regulatory variants. Commun Biology 3(1):762. https://doi.org/10.1038/s42003-020-01497-w

Article  CAS  Google Scholar 

Juang Y-L (2011) The spindle checkpoint protein MAD1 regulates the expression of E-Cadherin and prevents cell migration. Oncol Rep. https://doi.org/10.3892/or.2011.1519

Article  PubMed  Google Scholar 

Khawaja AP, Karla E, Rojas Lopez AJ, Hardcastle, Chris J, Hammond P, Liskova AE, Davidson DM, Gore et al (2019) Genetic variants associated with corneal Biomechanical properties and potentially conferring susceptibility to keratoconus in a Genome-Wide association study. JAMA Ophthalmol 137(9):1005. https://doi.org/10.1001/jamaophthalmol.2019.2058

Article  PubMed  PubMed Central  Google Scholar 

Kocaba V, Katikireddy KR, Gipson I, Price MO, Price FW, and Ula V. Jurkunas (2018) Association of the Gutta-Induced microenvironment with corneal endothelial cell behavior and demise in Fuchs endothelial corneal dystrophy. JAMA Ophthalmol 136(8):886. https://doi.org/10.1001/jamaophthalmol.2018.2031

Article  PubMed  PubMed Central  Google Scholar 

Koh D-I, Choi W-I, Jeon B-N, Lee C-E, Yun C-O, Man-Wook H (2009) A novel POK family transcription factor, ZBTB5, represses transcription of P21CIP1 gene. J Biol Chem 284(30):19856–19866. https://doi.org/10.1074/jbc.M109.025817

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krachmer JH, Purcell JJ, Young CW, and Kathleen D. Bucher (1978) Corneal endothelial dystrophy: A study of 64 families. Arch Ophthalmol 96(11):2036–2039. https://doi.org/10.1001/ARCHOPHT.1978.03910060424004

Article  CAS  PubMed  Google Scholar 

Loria R, Laquintana V, Scalera S, Fraioli R, Caprara V, Falcone I, Bazzichetto C et al (2022) SEMA6A/RhoA/YAP Axis mediates Tumor-Stroma interactions and prevents response to dual BRAF/MEK Inhibition in BRAF-Mutant melanoma. J Experimental Clin Cancer Res 41(1):148. https://doi.org/10.1186/s13046-022-02354-w

Comments (0)

No login
gif