Comprehensive profiling of tsRNAs in acute coronary syndrome: expression patterns, clinical correlations, and functional insights

Bergmark BA, Mathenge N, Merlini PA, Lawrence-Wright MB, Giugliano RP (2022) Acute coronary syndromes. Lancet (London England) 399:1347–1358. https://doi.org/10.1016/S0140-6736(21)02391-6

Article  PubMed  Google Scholar 

Björkegren JLM, Lusis AJ (2022) Atherosclerosis: recent developments. Cell 185:1630–1645. https://doi.org/10.1016/j.cell.2022.04.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai J, Li C, Liu S, Tan M, Sun Y, Sun X, Yang M, He B (2024) Angiogenin-mediated TsRNAs control inflammation and metabolic disorder by regulating NLRP3 inflammasome. Cell Death Differ 31:1057–1069. https://doi.org/10.1038/s41418-024-01311-8

Article  CAS  PubMed  Google Scholar 

Cao J, Cowan DB, Wang D-Z (2020) tRNA-Derived small RNAs and their potential roles in cardiac hypertrophy. Front Pharmacol 11:572941. https://doi.org/10.3389/fphar.2020.572941

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carey RM, Moran AE, Whelton PK (2022) Treatment of hypertension: A review. JAMA 328:1849–1861. https://doi.org/10.1001/jama.2022.19590

Article  CAS  PubMed  Google Scholar 

Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng G h, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q (2016) Sperm TsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Sci (New York N Y) 351:397–400. https://doi.org/10.1126/science.aad7977

Article  CAS  Google Scholar 

Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JWS, Green PJ, Barton GJ, Hutvagner G (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA (New York, N.Y.) 15: 2147–2160. https://doi.org/10.1261/rna.1738409

Díaz-Moreno I, Hollingworth D, Kelly G, Martin S, García-Mayoral M, Briata P, Gherzi R, Ramos A (2010) Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets. Nucleic Acids Res 38:5193–5205. https://doi.org/10.1093/nar/gkq216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dou R, Zhang X, Xu X, Wang P, Yan B (2021) Mesenchymal stem cell Exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol Immunol 139:106–114. https://doi.org/10.1016/j.molimm.2021.08.015

Article  CAS  PubMed  Google Scholar 

Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47:C7–12

Article  CAS  PubMed  Google Scholar 

Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL (2019) Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovascular Res 115:1732–1756. https://doi.org/10.1093/cvr/cvz203

Article  CAS  Google Scholar 

Fu X, He X, Yang Y, Jiang S, Wang S, Peng X, Tang G, Zong T, Li X, Zhang Y, Zou Y, Yu T (2021) Identification of transfer RNA-derived fragments and their potential roles in aortic dissection. Genomics 113:3039–3049. https://doi.org/10.1016/j.ygeno.2021.06.039

Article  CAS  PubMed  Google Scholar 

Gao J, Liu J, Zhang Y, Guan B, Qu H, Chai H, Wang W, Ma X, Shi D (2020) PBMCs-Derived MicroRNA signature as a prethrombotic status discriminator in stable coronary artery disease. Thromb Haemost 120:121–131. https://doi.org/10.1055/s-0039-1700518

Article  PubMed  Google Scholar 

Gensini GG (1983) A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 51:606

Article  CAS  PubMed  Google Scholar 

Goodarzi H, Liu X, Nguyen HCB, Zhang S, Fish L, Tavazoie SF (2015) Endogenous tRNA-Derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161:790–802. https://doi.org/10.1016/j.cell.2015.02.053

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu Z (2022) Complex heatmap visualization. IMeta 1:e43. https://doi.org/10.1002/imt2.43

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinf (Oxford England) 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313

Article  CAS  Google Scholar 

Han X-Y, Kong L-J, Li D, Tong M, Li X-M, Zhao C, Jiang Q, Yan B (2024) Targeting endothelial glycolytic reprogramming by tsRNA-1599 for ocular anti-angiogenesis therapy. Theranostics 14:3509–3525. https://doi.org/10.7150/thno.96946

Article  CAS  PubMed  PubMed Central  Google Scholar 

He X, Yang Y, Wang Q, Wang J, Li S, Li C, Zong T, Li X, Zhang Y, Zou Y, Yu T (2021) Expression profiles and potential roles of transfer RNA-derived small RNAs in atherosclerosis. J Cell Mol Med 25:7052–7065. https://doi.org/10.1111/jcmm.16719

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez R, Shi J, Liu J, Li X, Wu J, Zhao L, Zhou T, Chen Q, Zhou C (2023) PANDORA-Seq unveils the hidden small noncoding RNA landscape in atherosclerosis of LDL receptor-deficient mice. J Lipid Res 64:100352. https://doi.org/10.1016/j.jlr.2023.100352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinkel R, Batkai S, Bähr A, Bozoglu T, Straub S, Borchert T, Viereck J, Howe A, Hornaschewitz N, Oberberger L, Jurisch V, Kozlik-Feldmann R, Freudenthal F, Ziegler T, Weber C, Sperandio M, Engelhardt S, Laugwitz KL, Moretti A, Klymiuk N, Thum T, Kupatt C (2021) AntimiR-132 attenuates myocardial hypertrophy in an animal model of percutaneous aortic constriction. J Am Coll Cardiol 77:2923–2935. https://doi.org/10.1016/j.jacc.2021.04.028

Article  CAS  PubMed  Google Scholar 

Huang P, Tu B, Liao H-J, Huang F-Z, Li Z-Z, Zhu K-Y, Dai F, Liu H-Z, Zhang T-Y, Sun C-Z (2021) Elevation of plasma tRNA fragments as a promising biomarker for liver fibrosis in nonalcoholic fatty liver disease. Sci Rep 11:5886. https://doi.org/10.1038/s41598-021-85421-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin F, Yang L, Wang W, Yuan N, Zhan S, Yang P, Chen X, Ma T, Wang Y (2021) A novel class of TsRNA signatures as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol Cancer 20:95. https://doi.org/10.1186/s12943-021-01389-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khera AV, Kathiresan S (2017) Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 18:331–344. https://doi.org/10.1038/nrg.2016.160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HK, Yeom J-H, Kay MA (2020) Transfer RNA-Derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Therapy: J Am Soc Gene Therapy 28:2340–2357. https://doi.org/10.1016/j.ymthe.2020.09.013

Article  CAS  Google Scholar 

Klarin D, Natarajan P (2022) Clinical utility of polygenic risk scores for coronary artery disease. Nat Rev Cardiol 19:291–301. https://doi.org/10.1038/s41569-021-00638-w

Article  PubMed  Google Scholar 

Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23:2639–2649. https://doi.org/10.1101/gad.1837609

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li K, Lin Y, Luo Y, Xiong X, Wang L, Durante K, Li J, Zhou F, Guo Y, Chen S, Chen Y, Zhang D, Yeung S-CJ, Zhang H (2022) A signature of saliva-derived Exosomal small RNAs as predicting biomarker for esophageal carcinoma: a multicenter prospective study. Mol Cancer 21:21. https://doi.org/10.1186/s12943-022-01499-8

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif