Amendola LM, Dorschner MO, Robertson PD et al (2015) Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res 25:305–315. https://doi.org/10.1101/gr.183483.114
Article PubMed PubMed Central Google Scholar
Arslan Ateş E, Türkyilmaz A, Yıldırım Ö et al (2021) Secondary findings in 622 Turkish clinical exome sequencing data. J Hum Genet 66:1113–1119. https://doi.org/10.1038/s10038-021-00936-8
Article CAS PubMed Google Scholar
Carrasco E, López-Fernández A, Codina-Sola M et al (2023) Clinical and psychological implications of secondary and incidental findings in cancer susceptibility genes after exome sequencing in patients with rare disorders. J Med Genet 60:685–691. https://doi.org/10.1136/jmg-2022-108929
Article CAS PubMed Google Scholar
Cheema H, Bertoli-Avella AM, Skrahina V et al (2020) Genomic testing in 1019 individuals from 349 Pakistani families results in high diagnostic yield and clinical utility. Npj Genom Med 5:44. https://doi.org/10.1038/s41525-020-00150-z
Article CAS PubMed PubMed Central Google Scholar
Demir O, Saglam KA, Yilmaz M et al (2024) Secondary findings in genes related to cancer phenotypes in Turkish exome sequencing data from 2020 individuals. Am J Med Genet Pt A e63806. https://doi.org/10.1002/ajmg.a.63806
Dioun SM, Perez LR, Prabhu M et al (2024) Cost-effectiveness of BRCA1 testing at time of obstetrical prenatal carrier screening for cancer prevention. Am J Obstet Gynecol 231. https://doi.org/10.1016/j.ajog.2024.04.014.:330.e1-330.e14
Gordon AS, Zouk H, Venner E et al (2020) Frequency of genomic secondary findings among 21,915 eMERGE network participants. Genet Sci 22:1470–1477. https://doi.org/10.1038/s41436-020-0810-9
Green RC, Berg JS, Grody WW et al (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Sci 15:565–574. https://doi.org/10.1038/gim.2013.73
Haer-Wigman L, Van Der Schoot V, Feenstra I et al (2019) 1 In 38 individuals at risk of a dominant medically actionable disease. Eur J Hum Genet 27:325–330. https://doi.org/10.1038/s41431-018-0284-2
Hart MR, Biesecker BB, Blout CL et al (2019) Secondary findings from clinical genomic sequencing: prevalence, patient perspectives, family history assessment, and health-care costs from a multisite study. Genet Sci 21:1100–1110. https://doi.org/10.1038/s41436-018-0308-x
Haverfield EV, Esplin ED, Aguilar SJ et al (2021) Physician-directed genetic screening to evaluate personal risk for medically actionable disorders: a large multi-center cohort study. BMC Med 19:199. https://doi.org/10.1186/s12916-021-01999-2
Article PubMed PubMed Central Google Scholar
Henn J, Spier I, Adam RS et al (2019) Diagnostic yield and clinical utility of a comprehensive gene panel for hereditary tumor syndromes. Hered Cancer Clin Pract 17:5. https://doi.org/10.1186/s13053-018-0102-4
Article PubMed PubMed Central Google Scholar
Horiuchi Y, Matsubayashi H, Kiyozumi Y et al (2021) Disclosure of secondary findings in exome sequencing of 2480 Japanese cancer patients. Hum Genet 140:321–331. https://doi.org/10.1007/s00439-020-02207-6
Article CAS PubMed Google Scholar
Imyanitov EN, Kuligina ES, Sokolenko AP et al (2023) Hereditary cancer syndromes. World J Clin Oncol 14:40–68. https://doi.org/10.5306/wjco.v14.i2.40
Article PubMed PubMed Central Google Scholar
Jalkh N, Mehawej C, Chouery E (2020) Actionable exomic secondary findings in 280 Lebanese participants. Front Genet 11:208. https://doi.org/10.3389/fgene.2020.00208
Article CAS PubMed PubMed Central Google Scholar
Jang M-A, Lee S-H, Kim N, Ki C-S (2015) Frequency and spectrum of actionable pathogenic secondary findings in 196 Korean exomes. Genet Sci 17:1007–1011. https://doi.org/10.1038/gim.2015.26
Jensson BO, Arnadottir GA, Katrinardottir H et al (2023) Actionable genotypes and their association with life span in Iceland. N Engl J Med 389:1741–1752. https://doi.org/10.1056/NEJMoa2300792
Article CAS PubMed Google Scholar
Johnston JJ, Rubinstein WS, Facio FM et al (2012) Secondary variants in individuals undergoing exome sequencing: screening of 572 individuals identifies High-Penetrance mutations in Cancer-Susceptibility genes. Am J Hum Genet 91:97–108. https://doi.org/10.1016/j.ajhg.2012.05.021
Article CAS PubMed PubMed Central Google Scholar
Jurgens J, Ling H, Hetrick K et al (2015) Assessment of incidental findings in 232 whole-exome sequences from the Baylor–Hopkins center for Mendelian genomics. Genet Sci 17:782–788. https://doi.org/10.1038/gim.2014.196
Kasak L, Lillepea K, Nagirnaja L et al (2022) Actionable secondary findings following exome sequencing of 836 non-obstructive azoospermia cases and their value in patient management. Hum Reprod 37:1652–1663. https://doi.org/10.1093/humrep/deac100
Article CAS PubMed PubMed Central Google Scholar
Kuo C, Hwu W, Chien Y et al (2020) Frequency and spectrum of actionable pathogenic secondary findings in Taiwanese exomes. Molec Gen Gen Med 8:e1455. https://doi.org/10.1002/mgg3.1455
Kwak SH, Chae J, Choi S et al (2017) Findings of a 1303 Korean whole-exome sequencing study. Exp Mol Med 49:e356–e356. https://doi.org/10.1038/emm.2017.142
Article CAS PubMed PubMed Central Google Scholar
Lawrence L, Sincan M, Markello T et al (2014) The implications of Familial incidental findings from exome sequencing: the NIH undiagnosed diseases program experience. Genet Sci 16:741–750. https://doi.org/10.1038/gim.2014.29
Martone S, Buonagura AT, Marra R et al (2022) Clinical exome-based panel testing for medically actionable secondary findings in a cohort of 383 Italian participants. Front Genet 13:956723. https://doi.org/10.3389/fgene.2022.956723
Article CAS PubMed PubMed Central Google Scholar
Miller DT, Lee K, Gordon AS et al (2021) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American college of medical genetics and genomics (ACMG). Genet Sci 23:1391–1398. https://doi.org/10.1038/s41436-021-01171-4
Miller DT, Lee K, Abul-Husn NS et al (2023) ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American college of medical genetics and genomics (ACMG). Genet Sci 25:100866. https://doi.org/10.1016/j.gim.2023.100866
Nambot S, Sawka C, Bertolone G et al (2021) Incidental findings in a series of 2500 gene panel tests for a genetic predisposition to cancer: results and impact on patients. Eur J Med Genet 64:104196. https://doi.org/10.1016/j.ejmg.2021.104196
Article CAS PubMed Google Scholar
Nolan J, Buchanan J, Taylor J et al (2024a) Secondary (additional) findings from the 100,000 genomes project: disease manifestation, health care outcomes, and costs of disclosure. Genet Sci 26:101051. https://doi.org/10.1016/j.gim.2023.101051
Nolan JJ, Forrest J, Ormondroyd E (2024b) Additional findings from the 100,000 genomes project: A qualitative study of recipient perspectives. Genet Sci 26:101103. https://doi.org/10.1016/j.gim.2024.101103
Olfson E, Cottrell CE, Davidson NO et al (2015) Identification of medically actionable secondary findings in the 1000 genomes. PLoS ONE 10:e0135193. https://doi.org/10.1371/journal.pone.0135193
Article CAS PubMed PubMed Central Google Scholar
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. https://doi.org/10.1136/bmj.n71. BMJ n71
Pederson HJ, Narod SA (2024) Commentary: why is genetic testing underutilized worldwide? The case for hereditary breast cancer. BJC Rep 2:73. https://doi.org/10.1038/s44276-024-00099-x
Comments (0)