From Rare to Common: Genetic Insights into Variants in a Multicentric Spanish Study on COVID-19 Severity

Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000;11(3):362–71.

CAS  PubMed  Google Scholar 

Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000;11(3):372–8.

CAS  PubMed  Google Scholar 

Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024;625(7993):92–100. https://doi.org/10.1038/s41586-023-06045-0.

Article  CAS  PubMed  Google Scholar 

Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev. 2000;173:89–97. https://doi.org/10.1034/j.1600-065x.2000.917309.x.

Article  CAS  PubMed  Google Scholar 

Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200. https://doi.org/10.1038/ni758.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, et al. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45(4):737–48. https://doi.org/10.1016/j.immuni.2016.09.011.

Article  CAS  PubMed  Google Scholar 

Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9. https://doi.org/10.1126/science.1093620.

Article  CAS  PubMed  Google Scholar 

Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31. https://doi.org/10.1126/science.1093616.

Article  CAS  PubMed  Google Scholar 

Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A. 2004;101(15):5598–603. https://doi.org/10.1073/pnas.0400937101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bérouti M, Lammens K, Heiss M, Hansbauer L, Bauernfried S, Stöckl J, et al. Lysosomal endonuclease RNase T2 and PLD exonucleases cooperatively generate RNA ligands for TLR7 activation. Immunity. 2024;57(7):1482-1496.e8. https://doi.org/10.1016/j.immuni.2024.04.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ekimoto T, Nomura M, Saito Y, Suzuki M, Yamane T, Zhang Z, et al. Synergistic activation of TLR7 and 8 mediated by reduction of electrostatic repulsion. Chem Pharm Bull (Tokyo). 2024;72(11):1005–13. https://doi.org/10.1248/cpb.c24-00409.

Article  CAS  PubMed  Google Scholar 

Van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):663–73. https://doi.org/10.1001/jama.2020.13719.

Article  CAS  PubMed  Google Scholar 

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33. https://doi.org/10.1056/NEJMoa2001017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. https://doi.org/10.1038/s41586-020-2008-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

WHO chief declares end to COVID-19 as a global health emergency | UN News [Internet]. Available from: https://news.un.org/en/story/2023/05/1136367

Ricoca Peixoto V, Vieira A, Aguiar P, Sousa P, Carvalho C, Thomas D, et al. Determinants for hospitalisations, intensive care unit admission and death among 20,293 reported COVID-19 cases in Portugal, March to April 2020. Euro Surveill. 2021;26(33):2001059. https://doi.org/10.2807/1560-7917.ES.2021.26.33.2001059.

Article  PubMed  PubMed Central  Google Scholar 

O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature. 2021;590(7844):140–5. https://doi.org/10.1038/s41586-020-2918-0.

Article  CAS  PubMed  Google Scholar 

Navaratnam AV, Gray WK, Day J, Wendon J, Briggs TWR. Patient factors and temporal trends associated with COVID-19 in-hospital mortality in England: an observational study using administrative data. Lancet Respir Med. 2021;9(4):397–406. https://doi.org/10.1016/S2213-2600(20)30579-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

COVID-19 Death Data and Resources - National Vital Statistics System [Internet]. Available from: https://www.cdc.gov/nchs/nvss/covid-19.htm

Underlying Conditions and the Higher Risk for Severe COVID-19 | COVID-19 | CDC [Internet]. Available from: https://www.cdc.gov/covid/hcp/clinical-care/underlying-conditions.html

Solanich X, Vargas-Parra G, van der Made CI, Simons A, Schuurs-Hoeijmakers J, Antolí A, et al. Genetic Screening for TLR7 Variants in Young and Previously Healthy Men With Severe COVID-19. Front Immunol. 2021;23(12):719115. https://doi.org/10.3389/fimmu.2021.719115.

Article  CAS  Google Scholar 

Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol. 2021;6(62):eabl4348. https://doi.org/10.1126/sciimmunol.abl4348.

Article  PubMed  PubMed Central  Google Scholar 

Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–507. https://doi.org/10.1007/s10875-022-01289-3.

Article  PubMed  PubMed Central  Google Scholar 

Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J Clin Immunol. 2022;42(7):1508–20. https://doi.org/10.1007/s10875-022-01352-z.

Article  PubMed  Google Scholar 

Kosmicki JA, Horowitz JE, Banerjee N, Lanche R, Marcketta A, Maxwell E, et al. Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. Am J Hum Genet. 2021;108(7):1350–5. https://doi.org/10.1016/j.ajhg.2021.05.017.

Article  CAS  PubMed  Google Scholar 

Matuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, et al. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med. 2023;15(1):22. https://doi.org/10.1186/s13073-023-01173-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butler-Laporte G, Povysil G, Kosmicki JA, Cirulli ET, Drivas T, Furini S, et al. Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the host genetics initiative. PLoS Genet. 2022;18(11):e1010367. https://doi.org/10.1371/journal.pgen.1010367.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boos J, van der Made CI, Ramakrishnan G, Coughlan E, Asselta R, Löscher BS, et al. Stratified analyses refine association between TLR7 rare variants and severe COVID-19. HGG Adv. 2024;5(4):100323. https://doi.org/10.1016/j.xhgg.2024.100323.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. Elife. 2021;2(10):e67569. https://doi.org/10.7554/eLife.67569.

Article  Google Scholar 

Comments (0)

No login
gif