Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000;11(3):362–71.
Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000;11(3):372–8.
Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024;625(7993):92–100. https://doi.org/10.1038/s41586-023-06045-0.
Article CAS PubMed Google Scholar
Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev. 2000;173:89–97. https://doi.org/10.1034/j.1600-065x.2000.917309.x.
Article CAS PubMed Google Scholar
Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200. https://doi.org/10.1038/ni758.
Article CAS PubMed Google Scholar
Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, et al. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45(4):737–48. https://doi.org/10.1016/j.immuni.2016.09.011.
Article CAS PubMed Google Scholar
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9. https://doi.org/10.1126/science.1093620.
Article CAS PubMed Google Scholar
Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31. https://doi.org/10.1126/science.1093616.
Article CAS PubMed Google Scholar
Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A. 2004;101(15):5598–603. https://doi.org/10.1073/pnas.0400937101.
Article CAS PubMed PubMed Central Google Scholar
Bérouti M, Lammens K, Heiss M, Hansbauer L, Bauernfried S, Stöckl J, et al. Lysosomal endonuclease RNase T2 and PLD exonucleases cooperatively generate RNA ligands for TLR7 activation. Immunity. 2024;57(7):1482-1496.e8. https://doi.org/10.1016/j.immuni.2024.04.010.
Article CAS PubMed PubMed Central Google Scholar
Ekimoto T, Nomura M, Saito Y, Suzuki M, Yamane T, Zhang Z, et al. Synergistic activation of TLR7 and 8 mediated by reduction of electrostatic repulsion. Chem Pharm Bull (Tokyo). 2024;72(11):1005–13. https://doi.org/10.1248/cpb.c24-00409.
Article CAS PubMed Google Scholar
Van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):663–73. https://doi.org/10.1001/jama.2020.13719.
Article CAS PubMed Google Scholar
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33. https://doi.org/10.1056/NEJMoa2001017.
Article CAS PubMed PubMed Central Google Scholar
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. https://doi.org/10.1038/s41586-020-2008-3.
Article CAS PubMed PubMed Central Google Scholar
WHO chief declares end to COVID-19 as a global health emergency | UN News [Internet]. Available from: https://news.un.org/en/story/2023/05/1136367
Ricoca Peixoto V, Vieira A, Aguiar P, Sousa P, Carvalho C, Thomas D, et al. Determinants for hospitalisations, intensive care unit admission and death among 20,293 reported COVID-19 cases in Portugal, March to April 2020. Euro Surveill. 2021;26(33):2001059. https://doi.org/10.2807/1560-7917.ES.2021.26.33.2001059.
Article PubMed PubMed Central Google Scholar
O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature. 2021;590(7844):140–5. https://doi.org/10.1038/s41586-020-2918-0.
Article CAS PubMed Google Scholar
Navaratnam AV, Gray WK, Day J, Wendon J, Briggs TWR. Patient factors and temporal trends associated with COVID-19 in-hospital mortality in England: an observational study using administrative data. Lancet Respir Med. 2021;9(4):397–406. https://doi.org/10.1016/S2213-2600(20)30579-8.
Article CAS PubMed PubMed Central Google Scholar
COVID-19 Death Data and Resources - National Vital Statistics System [Internet]. Available from: https://www.cdc.gov/nchs/nvss/covid-19.htm
Underlying Conditions and the Higher Risk for Severe COVID-19 | COVID-19 | CDC [Internet]. Available from: https://www.cdc.gov/covid/hcp/clinical-care/underlying-conditions.html
Solanich X, Vargas-Parra G, van der Made CI, Simons A, Schuurs-Hoeijmakers J, Antolí A, et al. Genetic Screening for TLR7 Variants in Young and Previously Healthy Men With Severe COVID-19. Front Immunol. 2021;23(12):719115. https://doi.org/10.3389/fimmu.2021.719115.
Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol. 2021;6(62):eabl4348. https://doi.org/10.1126/sciimmunol.abl4348.
Article PubMed PubMed Central Google Scholar
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–507. https://doi.org/10.1007/s10875-022-01289-3.
Article PubMed PubMed Central Google Scholar
Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J Clin Immunol. 2022;42(7):1508–20. https://doi.org/10.1007/s10875-022-01352-z.
Kosmicki JA, Horowitz JE, Banerjee N, Lanche R, Marcketta A, Maxwell E, et al. Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. Am J Hum Genet. 2021;108(7):1350–5. https://doi.org/10.1016/j.ajhg.2021.05.017.
Article CAS PubMed Google Scholar
Matuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, et al. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med. 2023;15(1):22. https://doi.org/10.1186/s13073-023-01173-8.
Article CAS PubMed PubMed Central Google Scholar
Butler-Laporte G, Povysil G, Kosmicki JA, Cirulli ET, Drivas T, Furini S, et al. Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the host genetics initiative. PLoS Genet. 2022;18(11):e1010367. https://doi.org/10.1371/journal.pgen.1010367.
Article CAS PubMed PubMed Central Google Scholar
Boos J, van der Made CI, Ramakrishnan G, Coughlan E, Asselta R, Löscher BS, et al. Stratified analyses refine association between TLR7 rare variants and severe COVID-19. HGG Adv. 2024;5(4):100323. https://doi.org/10.1016/j.xhgg.2024.100323.
Article CAS PubMed PubMed Central Google Scholar
Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. Elife. 2021;2(10):e67569. https://doi.org/10.7554/eLife.67569.
Comments (0)