A validated and environmentally sustainable high-performance thin-layer chromatography method for the concurrent analysis of axitinib, pazopanib, crizotinib, ruxolitinib, and ibrutinib in bulk drug substances and pharmaceutical formulations

Haque SM, Ratemi ES (2017) Drug development and analysis review. Pharm Chem J 50:837–850

CAS  Google Scholar 

Geiser K (2006) Making safer chemicals. In: Abraham MA (ed) Sustainability science and engineering. Elsevier, Amsterdam, pp 161–175

Google Scholar 

Shewiyo DH, Kaale EA, Risha PG, Dejaegher B, Smeyers-Verbeke J, Vander Heyden Y (2012) HPTLC methods to assay active ingredients in pharmaceutical formulations: a review of the method development and validation steps. J Pharm Biomed Anal 66:11–23

PubMed  CAS  Google Scholar 

Zlatkis A, Kaiser RE (2011) HPTLC—High performance thin-layer chromatography. Elsevier, Amsterdam

Google Scholar 

Ferguson P, Raynie D (2018) Green analytical chemistry. In: Zhang W, Cue BW (eds) Green techniques for organic synthesis and medicinal chemistry. John Wiley & Sons, Hoboken, pp 43–70

Google Scholar 

Ibrahim AE, El Deeb S, Abdellatef HE, Hendawy HA, El-Abassy OM, Ibrahim H (2022) Eco-friendly and sensitive HPLC and TLC methods validated for the determination of betahistine in the presence of its process-related impurity. Separations 9(2):32–49

Google Scholar 

Tome T, Žigart N, Časar Z, Obreza A (2019) Development and optimization of liquid chromatography analytical methods by using AQbD principles: overview and recent advances. Org Process Res Dev 23(9):1784–1802

CAS  Google Scholar 

Yu LX (2008) Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res J 25:781–791

CAS  Google Scholar 

Rozet E, Lebrun P, Michiels JF, Sondag P, Scherder T, Boulanger B (2015) Analytical procedure validation and the quality by design paradigm. J Biopharm Stat 25(2):260–268

PubMed  Google Scholar 

González O, Blanco ME, Iriarte G, Bartolomé L, Maguregui MI, Alonso RM (2014) Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. J Chromatogr A 1353:10–27

PubMed  Google Scholar 

Silveira GD, Pego AM, Pereira e Silva J, Yonamine M (2019) Green sample preparations for the bioanalysis of drugs of abuse in complex matrices. Bioanalysis 11(04):295–312

PubMed  CAS  Google Scholar 

Swartz ME, Krull IS (2012) Handbook of analytical validation. CRC Press, Boca Raton

Google Scholar 

Vijayakumar B, Suman E, Sreekanth G (2016) Estimation of crizotinib in capsule dosage form by RP-HPLC. IOSR J Pharm Biol Sci 11:93–103

Google Scholar 

Wei LM, Xu ZX, Lv PF, Xue YL, Wang XX, Zhang M (2016) A simple HPLC method for the determination of Ibrutinib in rabbit plasma and its application to a pharmacokinetic study. Lat Am J Pharm 35(1):134–145

Google Scholar 

Suneetha A, Donepudi S (2017) HPLC method development and validation for the estimation of Axitinib in rabbit plasma. Braz J Pharm Sci 53:1–12

Google Scholar 

Dziadosz M, Lessig R, Bartels H (2012) HPLC–DAD protein kinase inhibitor analysis in human serum. J Chromatogr B 893:77–81

Google Scholar 

Wasnik U, Lakade S, Harde M, Banduke M, Dighe T, More A, Nale P, Patange A, Waghmare S, Kharsade D (2023) Green HPTLC-densitometric approach for quantitation of Ruxolitinib in bulk and marketed formulation. Res J Pharm Technol 16(9):4219–4224

Google Scholar 

Fouad M, Helvenstein M, Blankert B (2015) Ultra high performance liquid chromatography method for the determination of two recently FDA approved TKIs in human plasma using diode array detection. J Anal Methods Chem 2015:213–231

Google Scholar 

Merienne C, Rousset M, Ducint D, Castaing N, Titier K, Molimard M, Bouchet S (2018) High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. J Pharm Biomed Anal 150:112–120

PubMed  CAS  Google Scholar 

Ni MW, Zhou J, Li H, Chen W, Mou HZ, Zheng ZG (2017) Simultaneous determination of six tyrosine kinase inhibitors in human plasma using HPLC-Q-Orbitrap mass spectrometry. Bioanalysis 9(12):925–935

PubMed  CAS  Google Scholar 

Koller D, Vaitsekhovich V, Mba C, Steegmann JL, Zubiaur P, Abad-Santos F, Wojnicz A (2020) Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Appl Therap Drug Monit Talanta 208:120450

CAS  Google Scholar 

Bellouard M, Donadieu J, Thiebot P, Giroux Leprieur E, Saiag P, Etting I, Dugues P, Abe E, Alvarez JC, Larabi IA (2023) Validation of liquid chromatography coupled with tandem mass spectrometry for the determination of 12 tyrosine kinase inhibitors (TKIs) and their application to therapeutic drug monitoring in adult and pediatric populations. Pharmaceutics 16(1):1–5

Google Scholar 

Charlier B, Marino L, Dal Piaz F, Pingeon M, Coglianese A, Izzo B, Serio B, Selleri C, Filippelli A, Izzo V (2019) Development and validation of a reverse-phase high-performance liquid chromatography with fluorescence detection (RP-HPLC-FL) method to quantify ruxolitinib in plasma samples. Anal Lett 52(8):1328–1339

CAS  Google Scholar 

Petr J (2023) Determination of tyrosine kinase inhibitors via capillary electrophoresis with tandem mass spectrometry and online stacking preconcentration. Pharmaceuticals 16(2):186–197

PubMed  PubMed Central  CAS  Google Scholar 

Ahmed O (2019) Contribution of capillary electrophoresis for the therapeutic drug monitoring of patients treated by targeted cancer therapy: application to tyrosine kinase inhibitors. Université Montpellier

Google Scholar 

Darwish IA, Khalil NY, Darwish HW, Alzoman NZ, Al-Hossaini AM (2021) Spectrophotometric and computational investigations of charge transfer complexes of chloranilic acid with tyrosine kinase inhibitors and application to development of novel universal 96-microwell assay for their determination in pharmaceutical formulations. Spectrochim Acta A Mol Biomol Spectrosc 252:119482

PubMed  CAS  Google Scholar 

Guo ZX, Wu YE, Shi HY, van den Anker J, Liang P, Zheng Y, Zhao XW, Feng R, Zhao W (2023) A liquid chromatography-tandem mass spectrometry method for simultaneous quantification of thirty-nine tyrosine kinase inhibitors in human plasma. J Pharm Biomed Anal 224:115159

PubMed  CAS  Google Scholar 

Lou Y, Qin H, Hu Q, Chai Y, Zhou H, Chen M, Wang Q, Huang P, Gu J, Zhang Y (2022) Development and validation of a novel LC-MS/MS method for simultaneous quantitative determination of tyrosine kinase inhibitors in human plasma. J Chromatogr B 1208:123394

CAS  Google Scholar 

Verougstraete N, Stove V, Verstraete AG, Stove C (2021) Quantification of eight hematological tyrosine kinase inhibitors in both plasma and whole blood by a validated LC-MS/MS method. Talanta 226:122140

PubMed  CAS  Google Scholar 

Ezzeldin E, Iqbal M, Herqash RN, ElNahhas T (2020) Simultaneous quantitative determination of seven novel tyrosine kinase inhibitors in plasma by a validated UPLC-MS/MS method and its application to human microsomal metabolic stability study. J Chromatogr B 1136:121851

CAS  Google Scholar 

Mackey TK, Liang BA (2013) Improving global health governance to combat counterfeit medicines: a proposal for a UNODC-WHO-Interpol trilateral mechanism. BMC Med 11:1–10

Google Scholar 

Fink C, Sun D, Wagner K, Schneider M, Bauer H, Dolgos H, Mäder K, Peters SA (2020) Evaluating the role of solubility in oral absorption of poorly water-soluble drugs using physiologically-based pharmacokinetic modeling. Clin Pharmacol Ther 107(3):650–661

PubMed  CAS  Google Scholar 

Appeldoorn TY, Munnink TO, Morsink LM, Hooge ML, Touw DJ (2023) Pharmacokinetics and pharmacodynamics of ruxolitinib: a review. Clin Pharmacokinet 62(4):559–571

PubMed  PubMed Central  CAS  Google Scholar 

Akbel E, Güngör S, Bulduk İ (2022) Alternative analytical methods for ibrutinib quantification in pharmaceutical formulation: a statistical comparison. Rev Anal Chem 41(1):146–157

CAS  Google Scholar 

Guideline IHT (2013) Validation of analytical procedures: text and methodology, q2 (r1) the International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use. Geneva.

Darwish IA, Khalil NY, AlZeer M (2020) ICH/FDA guidelines-compliant validated stability-indicating HPLC-UV method for the determination of Axitinib in bulk and dosage forms. Curr Anal Chem 16(8):1106–1112

CAS  Google Scholar 

Ashok G, Mondal S, Ganapaty S, Bandla J (2018) Development and validation of stability indicating method for the estimation of pazopanib hydrochloride in pharmaceutical dosage forms by RP-HPLC. Pharm Lett 7(12):234–241

Google Scholar 

Heigener DF, Reck M (2018) Crizotinib. In: Martens UM (ed) Small molecules in oncology. Springer, Berlin, pp 57–65

Google Scholar 

Mead AJ, Milojkovic D, Knapper S, Garg M, Chacko J, Farquharson M, Yin J, Ali S, Clark RE, Andrews C, Dawson MK (2015) Response to ruxolitinib in patients with intermediate-1–, intermediate-2–, and high-risk myelofibrosis: results of the UK ROBUST Trial. Br J Haematol 170(1):29–39

PubMed  CAS  Google Scholar 

Koradia S, Patel M, Sen AK, Sen DB, Pradhan P (2024) Analytical quality by design-based thin-layer chromatography method development and validation for assay and content uniformity testing of the anti-neoplastic drug Axitinib in tablet formulation. Sep Sci Plus 7(3):2300176

CAS  Google Scholar 

Ghode PD, Dhaigude PU, Rathod SP, Sayare AS, Pachauri AD, Khandelwal K, Ghode SP (2020) Stability indicating HPTLC method development and validation for the estimation of pazopanib hydrochloride in bulk and its dosage form. Int J Pharm Res 12(3):1–19

Google Scholar 

Mukai Y, Wakamoto A, Hatsuyama T, Yoshida T, Sato H, Fujita A, Toda T (2021) An liquid chromatography–tandem mass spectrometry method for the simultaneous determination of afatinib, alectinib, ceritinib, crizotinib, dacomitinib, erlotinib, gefitinib, and osimertinib in human serum. Ther Drug Monit 43(6):772–779

PubMed  CAS  Google Scholar 

Shah DA, Patel JM, Mahajan A, Chhalotiya U (2021) Thin layer chromatographic method for separation and estimation of anticancer drug Ibrutinib in presence of its degradants. Sep Sci Plus 4(8):314–322

CAS  Google Scholar 

Pena Pereira F, Wojnowski W, Tobiszewski M (2020) AGREE—Analytical GREEnness metric approach and software. Anal Chem 92(14):10076–10082

PubMed  PubMed Central  CAS  Google Scholar 

Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical eco-scale for assessing the greenness of analytical procedures. Trends Anal Chem 37:61–72

Google Scholar 

Moffid MA, Mahmoud ST, Sayed RM (2023) An eco-friendly ultra-performance liquid chromatography–mass spectrometry method for quantification of rivaroxaban and ticagrelor in rat plasma: grapefruit interactions. Bioanalysis 15(22):1327–1341

PubMed 

Comments (0)

No login
gif