Greenness and whiteness assessment of a thin-layer chromatography‒densitometric method for the determination of three components in oromucosal spray

Sherma J, Fried B (2003) Handbook of thin-layer chromatography, 3rd edn. CRC Press, Boca Raton

Google Scholar 

Hahn-Deinstrop E (2007) Applied thin-layer chromatography: best practice and avoidance of mistakes, 2nd edn. John Wiley & Sons, New York

Google Scholar 

Tobiszewski M (2016) Metrics for green analytical chemistry. Anal Methods 8:2993–2999. https://doi.org/10.1039/C6AY00478D

Article  CAS  Google Scholar 

Koel M, Kaljurand M (2006) Application of the principles of green chemistry in analytical chemistry. Pure Appl Chem 78:1993–2002. https://doi.org/10.1351/pac200678111993

Article  CAS  Google Scholar 

Korany MA, Mahgoub H, Haggag RS, Ragab MA, Elmallah OA (2017) Green chemistry: analytical and chromatography. J Liq Chromatogr Relat Technol 40:839–852. https://doi.org/10.1080/10826076.2017.1373672

Article  CAS  Google Scholar 

Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem 37:61–72. https://doi.org/10.1016/j.trac.2012.03.013

Article  CAS  Google Scholar 

Płotka-Wasylka J (2018) A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 181:204–209. https://doi.org/10.1016/j.talanta.2018.01.013

Article  CAS  PubMed  Google Scholar 

Pena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREE—analytical GREEnness metric approach and software. Anal Chem 92:10076–10082. https://doi.org/10.1021/acs.analchem.0c01887

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal Chem 50:78–84. https://doi.org/10.1016/j.trac.2013.04.010

Article  CAS  Google Scholar 

Nowak PM, Kościelniak P (2019) What color is your method? Adaptation of the RGB additive color model to analytical method evaluation. Anal Chem 91:10343–10352. https://doi.org/10.1021/acs.analchem.9b01872

Article  CAS  PubMed  Google Scholar 

Nowak PM, Kościelniak P, Tobiszewski M, Ballester-Caudet A, Campíns-Falcó P (2020) Overview of the three multicriteria approaches applied to a global assessment of analytical methods. Trends Anal Chem 133:116065. https://doi.org/10.1016/j.trac.2020.116065

Article  CAS  Google Scholar 

Nowak PM, Wietecha-Posłuszny R, Pawliszyn J (2021) White analytical chemistry: an approach to reconcile the principles of green analytical chemistry and functionality. Trends Anal Chem 138:116223. https://doi.org/10.1016/j.trac.2021.116223

Article  CAS  Google Scholar 

The British Pharmacopoeia (2020). Her Majesty’s Stationary Office, London.

Sweetman SC (2014) Martindale: the complete drug reference, 38th edn. Pharmaceutical Press, London

Google Scholar 

Moffat AC, Osselton MD, Widdop B (2011) Clarke’s analysis of drugs and poisons, 4th edn. Pharmaceutical Press, London

Google Scholar 

The United States Pharmacopeia (2020) USP 43 NF 38 ed. The United States Pharmacopeial Convention, Rockville, MD.

Bebawy L, El Kousy N (1997) Stability-indicating method for the determination of hydrochlorothiazide, benzydamine hydrochloride and clonazepam in the presence of their degradation products. Anal Lett 30:1379–1397. https://doi.org/10.1080/00032719708007224

Article  CAS  Google Scholar 

Paschoal L, Ferreira W (2000) Simultaneous determination of benzocaine and cetylpiridinium chloride in tablets by first-derivative spectrophotometric method. Farmaco 55:687–693. https://doi.org/10.1016/S0014-827X(00)00092-6

Article  CAS  PubMed  Google Scholar 

El-Didamony AM (2008) Spectrophotometric determination of benzydamine HCl, levamisole HCl and mebeverine HCl through ion-pair complex formation with methyl orange. Spectrochim Acta Part A Mol Biomol Spectrosc 69:770–775. https://doi.org/10.1016/j.saa.2007.04.032

Article  CAS  Google Scholar 

Merey HA (2016) Simple spectrophotometric methods for the simultaneous determination of antipyrine and benzocaine. Bull Fac Pharm Cairo Univ 54:181–189. https://doi.org/10.1016/j.bfopcu.2016.05.003

Article  Google Scholar 

Baldock G, Brodie R, Chasseaud L, Taylor T (1990) Determination of benzydamine and its N-oxide in biological fluids by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 529:113–123. https://doi.org/10.1016/S0378-4347(00)83812-8

Article  CAS  Google Scholar 

Nishitani A, Tsukamoto Y, Kanda S, Imai K (1991) Determination of the fluorescent drugs dipyridamole and benzydamine in rat plasma by liquid chromatography with peroxyoxalate chemiluminescence detection. Anal Chim Acta 251:247–253. https://doi.org/10.1016/0003-2670(91)87143-U

Article  CAS  Google Scholar 

Grillo R, De Melo NFS, De Araújo DR et al (2009) Validation of an HPLC method for quantitative determination of benzocaine in PHBV-microparticles and PLA-nanoparticles. Lat Am J Pharm 28:393–399

CAS  Google Scholar 

Carlucci G, Iuliani P, Di Federico L (2010) Simultaneous determination of benzydamine hydrochloride and five impurities in an oral collutory as a pharmaceutical formulation by high-performance liquid chromatography. J Chromatogr Sci 48:854–859. https://doi.org/10.1093/chromsci/48.10.854

Article  CAS  PubMed  Google Scholar 

Hu T, Peng T, Li X-J, Chen D-D, Dai H-H, Deng X-J, Yue Z-F, Wang G-M, Shen J-Z, Xia X (2012) Simultaneous determination of thirty non-steroidal anti-inflammatory drug residues in swine muscle by ultra-high-performance liquid chromatography with tandem mass spectrometry. J Chromatogr A 1219:104–113. https://doi.org/10.1016/j.chroma.2011.11.009

Article  CAS  PubMed  Google Scholar 

Nakov N, Acevska J, Brezovska K, Petkovska R, Dimitrovska A (2012) Optimization of hydrophilic interaction liquid chromatographic method for simultaneous determination of cetylpyridinium chloride and benzocaine in lozenges. Maced J Chem Chem Eng 31:47–54. https://doi.org/10.20450/mjcce.2012.56

Article  CAS  Google Scholar 

Merey HA, Zaazaa HE (2014) Validated simultaneous determination of antipyrine and benzocaine HCl in the presence of benzocaine HCl degradation product. Anal Methods 6:6044–6050. https://doi.org/10.1039/C3AY42170H

Article  CAS  Google Scholar 

Manikandan K, Lakshmi K, Pai A (2019) QbD approach in RP-HPLC method development for the assay of benzocaine and diclofenac in dosage forms. In: AIP Conference Proceedings. AIP Publishing LLC, New York.

Syed MA, Khan IU, Iqbal MS, Syed HK, Irfan M (2021) Development of a novel, fast, simple, non-derived RP-HPLC method for simultaneous estimation of benzocaine and tibezonium iodide from mucoadhesive dosage form as well as human saliva and its validation. Lat Am J Pharm 40:1281–1287

CAS  Google Scholar 

Kachoosangi RT, Wildgoose GG, Compton RG (2008) Using capsaicin modified multiwalled carbon nanotube based electrodes and p-Chloranil modified carbon paste electrodes for the determination of amines: application to benzocaine and lidocaine. Electroanalysis 20:2495–2500. https://doi.org/10.1002/elan.200804385

Article  CAS  Google Scholar 

Duţu G, Cristea C, Ede B, Hârceagă V, Saponar A, Popovici E, Săndulescu R (2011) The electrochemical behavior of some local anaesthetics on screen printed electrodes modified with calixarenes. Farmacia 59:147–160

Google Scholar 

Bassuoni YF, Elzanfaly ES, Essam HAM, Zaazaa HE (2017) Ion selective electrode approach for in-line determination of benzydamine hydrochloride in different matrices of pharmaceutical industry. Anal Bioanal Electrochem 9:65–79

CAS  Google Scholar 

Khalil M, Issa Y, Korany M (2017) Novel modified carbon paste sensors for determination of benzydamine hydrochloride in pharmaceutical formulations and biological fluids. Schol Reps 2:1–12

Google Scholar 

Ramkumar R, Sangaranarayanan M (2019) Electrochemical sensing of anesthetics using polythiophene coated glassy carbon electrodes. ChemistrySelect 4:9776–9783. https://doi.org/10.1002/slct.201901982

Article  CAS  Google Scholar 

Mahmoud Mostafa S, Ali Farghali A, Magdy Khalil M (2021) Novel Zn-Fe LDH/MWCNTs and graphene/MWCNTs nanocomposites based potentiometric sensors for benzydamine determination in biological fluids and real water samples. Electroanalysis 33:1194–1204. https://doi.org/10.1002/elan.202060455

Article  CAS  Google Scholar 

Kumar S, Jyotirmayee K, Sarangi M (2013) Thin layer chromatography: a tool of biotechnology for isolation of bioactive compounds from medicinal plants. Int J Pharm Sci Rev Res 18:126–132

Google Scholar 

ICH Harmonized Guideline, Validation of Analytical Procedure Q2(R2) (2022) International council for harmonisation of technical requirements for pharmaceuticals for human use, Geneva

Tobiszewski M, Mechlińska A, Namieśnik J (2010) Green analytical chemistry—theory and practice. Chem Soc Rev 39:2869–2878. https://doi.org/10.1039/B926439F

Article  CAS  PubMed  Google Scholar 

Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA (2008) Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem 10:31–36. https://doi.org/10.1039/B711717E

Article 

Comments (0)

No login
gif