Rojas J, Dominguez JN, Charris JE, Lobo G, Payá M, Ferrándiz ML (2002) Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase. Eur J Med Chem 37(8):699–705. https://doi.org/10.1016/s0223-5234(02)01387-9
Article CAS PubMed Google Scholar
Salehi B, Quispe C, Chamkhi I, Omari NE, Balahbib A, Sharifi-Rad J, Bouyahya A, Akram M, Iqbal M, Docea AO, Caruntu C, Leyva-Gómez G, Dey A, Martorell M, Calina D, López V, Les F (2021) Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front Pharmacol. https://doi.org/10.3389/fphar.2020.592654
Article PubMed PubMed Central Google Scholar
Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PVL, Andrade CH, Neves BJ (2017) Chalcone derivatives: promising starting points for drug design. Molecules 22:E1210. https://doi.org/10.3390/molecules22081210
Starek M, Komsta Ł, Krzek J (2013) Reversed-phase thin-layer chromatography technique for the comparison of the lipophilicity of selected non-steroidal anti-inflammatory drugs. J Pharmaceut Biomed 85:132–137. https://doi.org/10.1016/j.jpba.2013.07.017
Csermely T, Kalász H, Deák K, Mohammed Y, Hasan MY, Darvas F, Petroianu G (2008) Lipophilicity determination of some ACE inhibitors by TLC. J Liq Chromatogr Relat Technol 31:2019–2034. https://doi.org/10.1080/10826070802198410
Poole SK, Poole CF (2003) Separation methods for estimating octanol–water partition coefficients. J Chromatogr B 797(1–2):3–19. https://doi.org/10.1016/j.jchromb.2003.08.032
Dobričić V, Vladimirov S, Čudina O (2016) Synthesis and RP-TLC lipophilicity evaluation of a novel fluocinolon acetonide soft drug derivative. Kragujevac J Sci 38:107–114. https://doi.org/10.5937/KgJSci1638107D
Hartmann T, Schmitt J (2004) Lipophilicity—Beyond octanol/water: a short comparison of modern technologies. Drug Discov Today Technol 1(4):431–439. https://doi.org/10.1016/j.ddtec.2004.10.006
Article CAS PubMed Google Scholar
Ciura K, Fedorowicz J, Andrić F, Greber KE, Gurgielewicz A, Sawicki W, Sączewski J (2019) Lipophilicity determination of quaternary (fluoro) quinolones by chromatographic and theoretical approaches. Int J Mol Sci 20(21):5288. https://doi.org/10.3390/ijms20215288
Article CAS PubMed PubMed Central Google Scholar
Weber TM, Ceilley RI, Buerger A, Kolbe L, Trookman NS, Rizer RL, Schoelermann A (2006) Skin tolerance, efficacy, and quality of life of patients with red facial skin using a skin care regimen containing Licochalcone A. J Cosmet Dermatol 5(3):227–232. https://doi.org/10.1111/j.1473-2165.2006.00261.x
Article CAS PubMed Google Scholar
Hagen M, Baker M (2017) Skin penetration and tissue permeation after topical administration of diclofenac. Curr Med Res and Opin 33(9):1623–1634. https://doi.org/10.1080/03007995.2017.1352497
Soczewiński E, Wachtmeister CA (1962) The relation between the composition of certain ternary two-phase solvent systems and RM values. J Chromatogr A 7:311–320. https://doi.org/10.1016/S0021-9673(01)86422-0
Ghose AK, Crippen GM (1987) Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci 27:21–35. https://doi.org/10.1021/ci00053a005
Article CAS PubMed Google Scholar
Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172. https://doi.org/10.1021/ci00063a006
Broto P, Moreau G, Vandycke C (1984) Molecular structures: perception, autocorrelation descriptor and SAR studies. System of atomic contributions for the calculation of n-octane/water partition coefficients. Eur J Med Chem Chim Theor 19:71–78
https://link.springer.com/referenceworkentry/10.1007/978-94-007-0753-5_2008
Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Sys 58(2):109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
Goodall C, Jolliffe IT (1988) Principal component analysis. Technometrics 30(3):351. https://doi.org/10.2307/1270093
de Jong S (1993) SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Sys 18(3):251–263. https://doi.org/10.1016/0169-7439(93)85002-X
Suykens JAK, Vandewalle J (1999) Least squares support vector machines. Neural Process Lett 9(3):293–300. https://doi.org/10.1023/A:1018628609742
Ojha PK, Roy K (2011) Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection. Chemometr Intell Lab 109:146–161. https://doi.org/10.1016/j.chemolab.2011.08.007
Snedecor GW, Cochran WG (1967) Statistical methods. Oxford & IBH, New Delhi
Marshall GR (1994) Binding-site modeling of unknown receptors. In: Kubinyi H (ed) 3D QSAR in drug design—Theory, methods and applications. ESCOM, Leiden, pp 80–116
Tropsha A (2010) Best practices for QSAR model development, validation and exploitation. Mol Inf 29:476–488. https://doi.org/10.1002/minf.201000061
Kuchar M, Kraus E, Jelínková M (1991) Influence of mobile phase composition on evaluation of lipophilicity by partition chromatography. J Chromatogr 557:399–411
Article CAS PubMed Google Scholar
Biagi GL, Barbaro AM, Sapone A, Recanatini M (1994) Determination of lipophilicity by means of reversed-phase thin-layer chromatography: I. Basic aspects and relationship between slope and intercept of TLC equations. J Chromatogr A 662:341–361. https://doi.org/10.1016/0021-9673(94)80521-0
Rageh AH, Atia NN, Abdel-Rahman HM (2017) Lipophilicity estimation of statins as a decisive physicochemical parameter for their hepato-selectivity using reversed-phase thin layer chromatography. J Pharm Biomed Anal 142:7–14. https://doi.org/10.1016/j.jpba.2017.04.037
Article CAS PubMed Google Scholar
Morak B, Nowak M, Pluta K (2007) Determination of the lipophilicity parameters R M0 and log P of new azaphenothiazines by reversed-phase thin-layer chromatography. J Liq Chromatogr Relat Technol 30:1845–1854
Ciura K, Fedorowicz J, Andrić F, Greber KE, Gurgielewicz A, Sawicki W, Sączewski J (2019) Lipophilicity determination of quaternary (fluoro)quinolones by chromatographic and theoretical approaches. Int J Mol Sci 20:E5288. https://doi.org/10.3390/ijms20215288
Constantinescu T, Lungu CN, Lung I (2019) Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives. Molecules 24:E1505. https://doi.org/10.3390/molecules24081505
Ciura K, Nowakowska J, Pikul P, Struck-Lewicka W, Markuszewski MJ (2015) A comparative quantitative structure-retention relationships study for lipophilicity determination of compounds with a phenanthrene skeleton on cyano-, reversed phase-, and normal phase-thin layer chromatography stationary phases. J AOAC Int 98:345–353. https://doi.org/10.5740/jaoacint.14-187
Article CAS PubMed Google Scholar
Starek M, Komsta Ł, Krzek J (2013) Reversed-phase thin-layer chromatography technique for the comparison of the lipophilicity of selected non-steroidal anti-inflammatory drugs. J Pharm Biomed Anal 85:132–137. https://doi.org/10.1016/j.jpba.2013.07.017
Article CAS PubMed Google Scholar
Tesic ZL, Milojkovic-Opsenica DM (2013) TLC determination of drug lipophilicity. In: Komsta L, Waksmundzka-Hajnos M, Sherma J (eds) Thin layer chromatography in drug analysis. CRC Press, Taylor & Francis Group, Boca Raton, pp 225–246
Ivkovic B, Nikolic K, Ilic B, Zizak Z, Cudina NR, Vladimirov SM (2013) Phenylpropiophenone derivatives as potential anticancer agents: synthesis, biological evaluation and quantitative structure-activity relationship study. Eur J Med Chem 63:239–255
Comments (0)