Isolation, identification, molecular docking and cytoxicity studies of antimicrobial compounds from (Blume) DC.

Mani M, Claira A, Uma S, Suriyati M, Surash R, Sharif M, Vikneswaran M (2014) Antimicrobial activity and phytochemical screening of various parts of Ixora coccinea. J Med Plant Res 8(10):423–429. https://doi.org/10.5897/jmpr11.1281

Article  Google Scholar 

Bhagyasri Y, Roshan P, Raja M, Vinay N, Praveen D, Mounika K, Latha D, Parameshwari N (2019) Determination of in vitro anti-microbial activity and anti-diabetic activity of Ixora chinensis. Am J Pharm Health Res. https://doi.org/10.46624/ajphr.2019.v7.i3.002

Article  Google Scholar 

Oktaviyanti D, Kartini MA (2019) Application and optimization of ultrasound-assisted deep eutectic solvent for the extraction of new skin-lightening cosmetic materials from Ixora javanica flower. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02950

Article  PubMed  PubMed Central  Google Scholar 

Oktaviyanti D, Setiawan F, Kartini K, Azminah A, Avanti C, Hayun H, Mun’im A (2022) Development of a simple and rapid HPLC-UV Method for ultrasound-assisted deep eutectic solvent extraction optimization of ferulic acid and antioxidant activity from Ixora javanica Flowers. S Afr J Chem Eng 40:165–175. https://doi.org/10.1016/j.sajce.2022.03.004

Article  Google Scholar 

Dontha S, Hemalatha K, Bhagavan RM (2015) Phytochemical screening and evaluation of in-vitro anti-oxidant activity of extracts of Ixora Javanica D. C Flowers Am Chem Sci J 10(1):1–9. https://doi.org/10.9734/ACSJ/2016/20661

Article  CAS  Google Scholar 

Chaterjee A, Chaterjee D, Ghosh M, Dagur P, Kaur J, Rangra K, Dey S, Mondal A, Ghosh A, Behera P (2023) Phytochemical screening and anti-inflammatory, antioxidant, and antimicrobial investigations on extracts of Ixora javanica. MSP 7:43–51. https://doi.org/10.4103/mtsp.mtsp_2_23

Article  Google Scholar 

Raju G, Suvarchala G, Nikitha K (2021) GC-MS analysis, gastroprotective and in silico docking studies of phytoconstituents from Ixora Javanica Flowers. IJLPR 11(2):P98-P106. https://ijlpr.com/index.php/journal/article/view/878

Ramadhan R, Phuwapraisirisan P, Amirta R, Darmawan B, Ul-Haq K, Kusuma W, Suwito H, Abdulgani N, Mukhdlor Saparwadi A (2022) The potency of selected ethnomedicinal plants from East Kalimantan, Indonesia as antidiabetic agents and free-radical scavengers. Biodiversitas. https://doi.org/10.1357/biodiv/d230458

Article  Google Scholar 

Buathong R, Chamchumroon V, Schinner J, Bacher M, Santimaleeworagun W, Kraichak E, Vajrodaya S (2019) Chemovariation and antibacterial activity of extracts and isolated compounds from species of Ixora and Greenea (Ixoroideae, Rubiaceae). Peer J. https://doi.org/10.7717/peerj.6893

Article  PubMed  PubMed Central  Google Scholar 

Hemalatha K, Priya DK, Sunitha D (2012) Hepatoprotective activity of Ixora javanica D.C. flowers against CCl4-induced liver damage in rats. Res J Pharm Technol 5(11):1438–1441

Google Scholar 

Amir S, Hassan Z, Murugaiyah V, Nogawa T, Wahab A (2019) Anti-cholinesterase potential of diverse botanical families from Malaysia: evaluation of crude extracts and fractions from liquid-liquid extraction and acid-base fractionation. J Ethnopharmacol 245(5):112160. https://doi.org/10.1016/j.jep.2019.112160

Article  CAS  Google Scholar 

Yerragunta V, Sunitha D, Ramesh A (2016) Phytochemical evaluation of anti-inflammatory activity of different solvents extracts of Ixora javanica flowers. NPCR. https://doi.org/10.4172/2329-6836.1000219

Article  Google Scholar 

Dontha S, Hemalatha K, Bhagavan M (2015) Phytochemical characterization of active constituents from extracts of Ixora javanica DC. flowers. J Chromatogr Sep Tech. https://doi.org/10.4172/2157-7064.1000294

Article  Google Scholar 

Kamurthy H, Dontha S, Vadlamudi A (2014) Isolation and characterization of terpenoids from flowers and leaves of Ixora javanica L. Med Plant. https://doi.org/10.5958/0975-6892.2014.00009.4

Article  Google Scholar 

Raju G, Anusha K, Suvarchala R, Mondal T (2021) Anti-inflammatory, anti-bacterial, in silico docking studies and ADME studies of Ixora javanica. J Adv Sci Res 2021:79–87. https://www.myresearchjournals.com/index.php/JASR/article/view/9909

Nostro A, Germano M, D’Angelo V, Marino A, Cannatelli M (2000) Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 30(5):379–384. https://doi.org/10.1046/j.1472-765x.2000.00731.x

Article  CAS  PubMed  Google Scholar 

Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200. https://doi.org/10.1038/1811199a0

Article  CAS  Google Scholar 

Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem 269(2):337–341. https://doi.org/10.1006/ABIO.1999.4019

Article  CAS  PubMed  Google Scholar 

Protein plus (n.d) ZBH - Center for Bioinformatics, Universitat Hamburg, Website: https://proteins.plus/ (Accessed on 18th November 2024)

PubChem (n.d) National Library of Medicine, National center for Biotechnology information, Website: https://pubchem.ncbi.nlm.nih.gov/ (Accessed on 18th November 2024)

Athmaram TN, Gandhi PT (2016) Evaluation of novel nicotine analogues for their anti-bacterial and anti-fungal activity. J Microbiol Exp 3(1):00079

Google Scholar 

Xing C, Mi D, Chen Y, Hu X, Liao XD (2020) Metabolic activity of Bacillus coagulans R11 and the health benefits of and potential pathogen inhibition by this species in the intestines of laying hens under lead exposure. Sci Total Environ 709:134507

CAS  PubMed  Google Scholar 

Liu YJ, Wei P, Hu MB, Xu M, Wu CJ (2016) The pharmacology, toxicology and potential applications of arecoline: a review. Pharm Biol 54(11):2753–2760. https://doi.org/10.3109/13880209.2016.1160251

Article  CAS  PubMed  Google Scholar 

Joaquim R, Boff T, Adam C, Lima-Morales D, Cesare A, Kaminski F, Teixeira L, Fuentefria M, Andrade F, Martins F (2022) Antibacterial and synergistic activity of a new 8-hydroxyquinoline derivative against methicillin-resistant Staphylococcus aureus. Future Microbiol 17(6):425–436. https://doi.org/10.2217/fmb-2021-0198

Article  CAS  PubMed  Google Scholar 

Yin D, Sun Y, Lawoe K, Yang Z, Liu Q, Shang F, Liu H, Yang D, Zhu K, Huang L (2019) Synthesis and anti-phytopathogenic activity of 8-hydroxyquinoline derivatives. RSC Adv 9(52):30087–30099. https://doi.org/10.1039/c9ra05712a

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang W, Han E, Kim J, Oh H, Cho H, Lee J (2017) 4-Hydroxybenzaldehyde accelerates acute wound healing through activation of focal adhesion signalling in keratinocytes. Sci Rep. https://doi.org/10.1038/s41598-017-14368-y

Article  PubMed  PubMed Central  Google Scholar 

Schulte C, Wesley W, Ted R (2015) Azelaic acid: evidence-based update on mechanism of action and clinical application. J Invest Dermatol 14(9):964–968

CAS  Google Scholar 

Habash S, Könen P, Loeschcke A, Wüst M, Jaeger E, Drepper T, Grundler W, Schleker S (2020) The plant sesquiterpene nootkatone efficiently reduces Heterodera schachtii parasitism by activating plant defense. Int J Mol Sci 21(24):9627. https://doi.org/10.3390/ijms21249627

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo Y, Lee R, Heo W, No H, Rhee D, Ko S, Kwak B, Han J (2018) Ursolic acid in health and disease. Korean J Physiol Pharmacol 22(3):235. https://doi.org/10.4196/kjpp.2018.22.3.235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dilika F, Bremner P, Meyer J (2000) Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia 71(4):450–452. https://doi.org/10.1016/s0367-326x(00)00150-7

Article  CAS  PubMed  Google Scholar 

Cheng G, Chen S, Zhu L (2018) 12-oxo-phytodienoic acid enhances wheat resistance to Hessian Fly (Diptera: Cecidomyiidae) under heat stress. J Econ Entomol 111:917–922. https://doi.org/10.1093/jee/tox374

Article  CAS  PubMed  Google Scholar 

PubChem Compound Summary for CID 7971, 3-Hydroxypyridine (2024) MD: National Center for Biotechnology Information; [Accessed 2024 Aug 4]. https://pubchem.ncbi.nlm.nih.gov/compound/3-Hydroxypyridine

PubChem Compound Summary for CID 13401, 3-Hydroxypicolinic acid (2024) MD: National Center for Biotechnology Information; [Accessed 2024 Aug 4]. https://pubchem.ncbi.nlm.nih.gov/compound/3-Hydroxypicolinic-acid

Kohnen-Johannsen K, Kayser O (2019) Tropane alkaloids: chemistry, pharmacology. Biosynt Prod Molecules 24(4):796. https://doi.org/10.3390/molecules24040796

Article  CAS  Google Scholar 

Kratky M, Konečná K, Janoušek J, Brablíková M, Janďourek O, Trejtnar F, Stolaříková J, Vinšová J (2019) 4-aminobenzoic acid derivatives: converting folate precursor to antimicrobial and cytotoxic agents. Biomolecules 10(1):9. https://doi.org/10.3390/biom10010009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguiar O, Olivares L, Novotny H, Canellas P (2018) Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids. PeerJ 6:e5445. https://doi.org/10.7717/peerj.5445

Comments (0)

No login
gif