Mani M, Claira A, Uma S, Suriyati M, Surash R, Sharif M, Vikneswaran M (2014) Antimicrobial activity and phytochemical screening of various parts of Ixora coccinea. J Med Plant Res 8(10):423–429. https://doi.org/10.5897/jmpr11.1281
Bhagyasri Y, Roshan P, Raja M, Vinay N, Praveen D, Mounika K, Latha D, Parameshwari N (2019) Determination of in vitro anti-microbial activity and anti-diabetic activity of Ixora chinensis. Am J Pharm Health Res. https://doi.org/10.46624/ajphr.2019.v7.i3.002
Oktaviyanti D, Kartini MA (2019) Application and optimization of ultrasound-assisted deep eutectic solvent for the extraction of new skin-lightening cosmetic materials from Ixora javanica flower. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02950
Article PubMed PubMed Central Google Scholar
Oktaviyanti D, Setiawan F, Kartini K, Azminah A, Avanti C, Hayun H, Mun’im A (2022) Development of a simple and rapid HPLC-UV Method for ultrasound-assisted deep eutectic solvent extraction optimization of ferulic acid and antioxidant activity from Ixora javanica Flowers. S Afr J Chem Eng 40:165–175. https://doi.org/10.1016/j.sajce.2022.03.004
Dontha S, Hemalatha K, Bhagavan RM (2015) Phytochemical screening and evaluation of in-vitro anti-oxidant activity of extracts of Ixora Javanica D. C Flowers Am Chem Sci J 10(1):1–9. https://doi.org/10.9734/ACSJ/2016/20661
Chaterjee A, Chaterjee D, Ghosh M, Dagur P, Kaur J, Rangra K, Dey S, Mondal A, Ghosh A, Behera P (2023) Phytochemical screening and anti-inflammatory, antioxidant, and antimicrobial investigations on extracts of Ixora javanica. MSP 7:43–51. https://doi.org/10.4103/mtsp.mtsp_2_23
Raju G, Suvarchala G, Nikitha K (2021) GC-MS analysis, gastroprotective and in silico docking studies of phytoconstituents from Ixora Javanica Flowers. IJLPR 11(2):P98-P106. https://ijlpr.com/index.php/journal/article/view/878
Ramadhan R, Phuwapraisirisan P, Amirta R, Darmawan B, Ul-Haq K, Kusuma W, Suwito H, Abdulgani N, Mukhdlor Saparwadi A (2022) The potency of selected ethnomedicinal plants from East Kalimantan, Indonesia as antidiabetic agents and free-radical scavengers. Biodiversitas. https://doi.org/10.1357/biodiv/d230458
Buathong R, Chamchumroon V, Schinner J, Bacher M, Santimaleeworagun W, Kraichak E, Vajrodaya S (2019) Chemovariation and antibacterial activity of extracts and isolated compounds from species of Ixora and Greenea (Ixoroideae, Rubiaceae). Peer J. https://doi.org/10.7717/peerj.6893
Article PubMed PubMed Central Google Scholar
Hemalatha K, Priya DK, Sunitha D (2012) Hepatoprotective activity of Ixora javanica D.C. flowers against CCl4-induced liver damage in rats. Res J Pharm Technol 5(11):1438–1441
Amir S, Hassan Z, Murugaiyah V, Nogawa T, Wahab A (2019) Anti-cholinesterase potential of diverse botanical families from Malaysia: evaluation of crude extracts and fractions from liquid-liquid extraction and acid-base fractionation. J Ethnopharmacol 245(5):112160. https://doi.org/10.1016/j.jep.2019.112160
Yerragunta V, Sunitha D, Ramesh A (2016) Phytochemical evaluation of anti-inflammatory activity of different solvents extracts of Ixora javanica flowers. NPCR. https://doi.org/10.4172/2329-6836.1000219
Dontha S, Hemalatha K, Bhagavan M (2015) Phytochemical characterization of active constituents from extracts of Ixora javanica DC. flowers. J Chromatogr Sep Tech. https://doi.org/10.4172/2157-7064.1000294
Kamurthy H, Dontha S, Vadlamudi A (2014) Isolation and characterization of terpenoids from flowers and leaves of Ixora javanica L. Med Plant. https://doi.org/10.5958/0975-6892.2014.00009.4
Raju G, Anusha K, Suvarchala R, Mondal T (2021) Anti-inflammatory, anti-bacterial, in silico docking studies and ADME studies of Ixora javanica. J Adv Sci Res 2021:79–87. https://www.myresearchjournals.com/index.php/JASR/article/view/9909
Nostro A, Germano M, D’Angelo V, Marino A, Cannatelli M (2000) Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 30(5):379–384. https://doi.org/10.1046/j.1472-765x.2000.00731.x
Article CAS PubMed Google Scholar
Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200. https://doi.org/10.1038/1811199a0
Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem 269(2):337–341. https://doi.org/10.1006/ABIO.1999.4019
Article CAS PubMed Google Scholar
Protein plus (n.d) ZBH - Center for Bioinformatics, Universitat Hamburg, Website: https://proteins.plus/ (Accessed on 18th November 2024)
PubChem (n.d) National Library of Medicine, National center for Biotechnology information, Website: https://pubchem.ncbi.nlm.nih.gov/ (Accessed on 18th November 2024)
Athmaram TN, Gandhi PT (2016) Evaluation of novel nicotine analogues for their anti-bacterial and anti-fungal activity. J Microbiol Exp 3(1):00079
Xing C, Mi D, Chen Y, Hu X, Liao XD (2020) Metabolic activity of Bacillus coagulans R11 and the health benefits of and potential pathogen inhibition by this species in the intestines of laying hens under lead exposure. Sci Total Environ 709:134507
Liu YJ, Wei P, Hu MB, Xu M, Wu CJ (2016) The pharmacology, toxicology and potential applications of arecoline: a review. Pharm Biol 54(11):2753–2760. https://doi.org/10.3109/13880209.2016.1160251
Article CAS PubMed Google Scholar
Joaquim R, Boff T, Adam C, Lima-Morales D, Cesare A, Kaminski F, Teixeira L, Fuentefria M, Andrade F, Martins F (2022) Antibacterial and synergistic activity of a new 8-hydroxyquinoline derivative against methicillin-resistant Staphylococcus aureus. Future Microbiol 17(6):425–436. https://doi.org/10.2217/fmb-2021-0198
Article CAS PubMed Google Scholar
Yin D, Sun Y, Lawoe K, Yang Z, Liu Q, Shang F, Liu H, Yang D, Zhu K, Huang L (2019) Synthesis and anti-phytopathogenic activity of 8-hydroxyquinoline derivatives. RSC Adv 9(52):30087–30099. https://doi.org/10.1039/c9ra05712a
Article CAS PubMed PubMed Central Google Scholar
Kang W, Han E, Kim J, Oh H, Cho H, Lee J (2017) 4-Hydroxybenzaldehyde accelerates acute wound healing through activation of focal adhesion signalling in keratinocytes. Sci Rep. https://doi.org/10.1038/s41598-017-14368-y
Article PubMed PubMed Central Google Scholar
Schulte C, Wesley W, Ted R (2015) Azelaic acid: evidence-based update on mechanism of action and clinical application. J Invest Dermatol 14(9):964–968
Habash S, Könen P, Loeschcke A, Wüst M, Jaeger E, Drepper T, Grundler W, Schleker S (2020) The plant sesquiterpene nootkatone efficiently reduces Heterodera schachtii parasitism by activating plant defense. Int J Mol Sci 21(24):9627. https://doi.org/10.3390/ijms21249627
Article CAS PubMed PubMed Central Google Scholar
Seo Y, Lee R, Heo W, No H, Rhee D, Ko S, Kwak B, Han J (2018) Ursolic acid in health and disease. Korean J Physiol Pharmacol 22(3):235. https://doi.org/10.4196/kjpp.2018.22.3.235
Article CAS PubMed PubMed Central Google Scholar
Dilika F, Bremner P, Meyer J (2000) Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia 71(4):450–452. https://doi.org/10.1016/s0367-326x(00)00150-7
Article CAS PubMed Google Scholar
Cheng G, Chen S, Zhu L (2018) 12-oxo-phytodienoic acid enhances wheat resistance to Hessian Fly (Diptera: Cecidomyiidae) under heat stress. J Econ Entomol 111:917–922. https://doi.org/10.1093/jee/tox374
Article CAS PubMed Google Scholar
PubChem Compound Summary for CID 7971, 3-Hydroxypyridine (2024) MD: National Center for Biotechnology Information; [Accessed 2024 Aug 4]. https://pubchem.ncbi.nlm.nih.gov/compound/3-Hydroxypyridine
PubChem Compound Summary for CID 13401, 3-Hydroxypicolinic acid (2024) MD: National Center for Biotechnology Information; [Accessed 2024 Aug 4]. https://pubchem.ncbi.nlm.nih.gov/compound/3-Hydroxypicolinic-acid
Kohnen-Johannsen K, Kayser O (2019) Tropane alkaloids: chemistry, pharmacology. Biosynt Prod Molecules 24(4):796. https://doi.org/10.3390/molecules24040796
Kratky M, Konečná K, Janoušek J, Brablíková M, Janďourek O, Trejtnar F, Stolaříková J, Vinšová J (2019) 4-aminobenzoic acid derivatives: converting folate precursor to antimicrobial and cytotoxic agents. Biomolecules 10(1):9. https://doi.org/10.3390/biom10010009
Article CAS PubMed PubMed Central Google Scholar
Aguiar O, Olivares L, Novotny H, Canellas P (2018) Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids. PeerJ 6:e5445. https://doi.org/10.7717/peerj.5445
Comments (0)