Electrocardiogram heart rate variability for machine learning diagnosis of obstructive sleep apnoea: A Bayesian meta-analysis

Gibson GJ (2004) Obstructive sleep apnoea syndrome: underestimated and undertreated. Br Med Bull 72(1):49–64. https://doi.org/10.1093/bmb/ldh044

Article  CAS  PubMed  Google Scholar 

Benjafield AV, Ayas NT, Eastwood PR et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7(8):687–698. https://doi.org/10.1016/S2213-2600(19)30198-5

Article  PubMed  PubMed Central  Google Scholar 

Patil SP, Schneider H, Schwartz AR, Smith PL (2007) Adult obstructive sleep apnea: pathophysiology and diagnosis. Chest 132(1):325–337. https://doi.org/10.1378/chest.07-0040

Article  PubMed  Google Scholar 

Shamsuzzaman ASM, Gersh BJ, Somers VK (2003) Obstructive sleep apnea implications for cardiac and vascular disease. JAMA 290(14):1906–1914. https://doi.org/10.1001/jama.290.14.1906

Article  CAS  PubMed  Google Scholar 

Marchi NA, Allali G, Heinzer R (2024) Obstructive sleep apnea, cognitive impairment, and dementia: is sleep microstructure an important feature? Sleep 47(12):zsae161. https://doi.org/10.1093/sleep/zsae161

Article  PubMed  PubMed Central  Google Scholar 

Gildeh N, Drakatos P, Higgins S, Rosenzweig I, Kent BD (2016) Emerging co-morbidities of obstructive sleep apnea: cognition, kidney disease, and cancer. J Thorac Dis 8(9):E901–E917. https://doi.org/10.21037/jtd.2016.09.23

Article  PubMed  PubMed Central  Google Scholar 

Tan BKJ, Teo YH, Tan NKW et al (2022) Association of obstructive sleep apnea and nocturnal hypoxemia with all-cancer incidence and mortality: a systematic review and meta-analysis. J Clin Sleep Med 18(5):1427–1440. https://doi.org/10.5664/jcsm.9772

Article  PubMed  PubMed Central  Google Scholar 

Teo YH, Tan BKJ, Tan NKW et al (2022) Obstructive sleep apnea and the incidence and mortality of gastrointestinal cancers: a systematic review and meta-analysis of 5,120,837 participants. J Gastrointest Oncol 13(6):2789–2798. https://doi.org/10.21037/jgo-22-153

Article  PubMed  PubMed Central  Google Scholar 

Cheong AJY, Tan BKJ, Teo YH et al (2022) Obstructive sleep apnea and lung cancer: a systematic review and meta-analysis. Ann Am Thorac Soc 19(3):469–475. https://doi.org/10.1513/AnnalsATS.202108-960OC

Article  PubMed  Google Scholar 

Tan BKJ, Tan NKW, Teo YH et al (2022) Association of obstructive sleep apnea with thyroid cancer incidence: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 279(11):5407–5414. https://doi.org/10.1007/s00405-022-07457-w

Article  PubMed  Google Scholar 

Laratta CR, Ayas NT, Povitz M, Pendharkar SR (2017) Diagnosis and treatment of obstructive sleep apnea in adults. CMAJ 189(48):E1481–E1488. https://doi.org/10.1503/cmaj.170296

Article  PubMed  PubMed Central  Google Scholar 

Pivetta B, Chen L, Nagappa M et al (2021) Use and performance of the STOP-Bang questionnaire for obstructive sleep apnea screening across geographic regions: a systematic review and meta-analysis. JAMA Netw Open 4(3):e211009. https://doi.org/10.1001/jamanetworkopen.2021.1009

Article  PubMed  PubMed Central  Google Scholar 

Qin H, Steenbergen N, Glos M et al (2021) The different facets of heart rate variability in obstructive sleep apnea. Front Psychiatry 12:642333. https://doi.org/10.3389/fpsyt.2021.642333

Article  PubMed  PubMed Central  Google Scholar 

Yılmaz B, Asyalı MH, Arıkan E, Yetkin S, Özgen F (2010) Sleep stage and obstructive apneaic epoch classification using single-lead ECG. BioMed Eng OnLine 9(1):39. https://doi.org/10.1186/1475-925X-9-39

Article  PubMed  PubMed Central  Google Scholar 

Kamga P, Mostafa R, Zafar S (2022) The use of wearable ECG devices in the clinical setting: a review. Curr Emerg Hosp Med Rep 10(3):67–72. https://doi.org/10.1007/s40138-022-00248-x

Article  PubMed  PubMed Central  Google Scholar 

Karasulu L, Dalar L, Sökücü S, Altın S (2012) Heart rate variability analysis of single-channel electrocardiogram can help to differentiate high-risk patients with obstructive sleep apnea syndrome - a study on diagnostic accuracy. Anadolu Kardiyol Derg 12(4):331–338. https://doi.org/10.5152/akd.2012.097

Article  PubMed  Google Scholar 

Tan BKJ, Gao EY, Tan NKW et al (2025) Machine listening for OSA diagnosis: a bayesian meta-analysis. Chest. https://doi.org/10.1016/j.chest.2025.04.006

Article  PubMed  PubMed Central  Google Scholar 

Gao EY, Tan BKJ, Tan NKW et al (2024) Artificial intelligence facial recognition of obstructive sleep apnea: a Bayesian meta-analysis. Sleep Breath 29(1):36. https://doi.org/10.1007/s11325-024-03173-3

Article  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 13(21):4994. https://doi.org/10.1136/bmj.n71

Article  Google Scholar 

Harrison H, Griffin SJ, Kuhn I, Usher-Smith JA (2020) Software tools to support title and abstract screening for systematic reviews in healthcare: an evaluation. BMC Med Res Methodol 20(1):7. https://doi.org/10.1186/s12874-020-0897-3

Article  PubMed  PubMed Central  Google Scholar 

Whiting PF, Rutjes AWS, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

Article  PubMed  Google Scholar 

Schünemann HJ, Mustafa RA, Brozek J et al (2020) GRADE guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. J Clin Epidemiol 122:129–141. https://doi.org/10.1016/j.jclinepi.2019.12.020

Article  PubMed  Google Scholar 

Cerullo E, Sutton AJ, Jones HE, Wu O, Quinn TJ, Cooper NJ (2023) MetaBayesDTA: codeless Bayesian meta-analysis of test accuracy, with or without a gold standard. BMC Med Res Methodol 23(1):127. https://doi.org/10.1186/s12874-023-01910-y

Article  PubMed  PubMed Central  Google Scholar 

Debray TPA, Damen JAAG, Snell KIE et al (2017) A guide to systematic review and meta-analysis of prediction model performance. BMJ 356:i6460. https://doi.org/10.1136/bmj.i6460

Article  PubMed  Google Scholar 

Mizutani S, Zhou Y, Tian Y, Takagi T, Ohkubo T, Hattori S (2023) DTAmetasa : an R shiny application for meta-analysis of diagnostic test accuracy and sensitivity analysis of publication bias. Res Synth Methods 14(6):916–925. https://doi.org/10.1002/jrsm.1666

Article  PubMed  Google Scholar 

Freeman SC, Kerby CR, Patel A, Cooper NJ, Quinn T, Sutton AJ (2019) Development of an interactive web-based tool to conduct and interrogate meta-analysis of diagnostic test accuracy studies: MetaDTA. BMC Med Res Methodol 19(1):81. https://doi.org/10.1186/s12874-019-0724-x

Article  PubMed  PubMed Central  Google Scholar 

Patel A, Cooper N, Freeman S, Sutton A (2021) Graphical enhancements to summary receiver operating characteristic plots to facilitate the analysis and reporting of meta-analysis of diagnostic test accuracy data. Res Synth Methods 12(1):34–44. https://doi.org/10.1002/jrsm.1439

Article  PubMed  Google Scholar 

Zhou Y, Huang A, Hattori S (2023) A likelihood-based sensitivity analysis for publication bias on the summary receiver operating characteristic in meta-analysis of diagnostic test accuracy. Stat Med 42(6):781–798. https://doi.org/10.1002/sim.9643

Article  PubMed  Google Scholar 

Carpenter B, Gelman A, Hoffman MD et al (2017) Stan: a probabilistic programming language. J Stat Soft 76(1):1–32. https://doi.org/10.18637/jss.v076.i01

Article  Google Scholar 

Khandoker AH, Palaniswami M, Karmakar CK (2009) Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans Inf Technol Biomed 13(1):37–48. https://doi.org/10.1109/TITB.2008.2004495

Article 

Comments (0)

No login
gif