Ababneh NA, Al-Kurdi B, Jamali F, Awidi A. A comparative study of the capability of MSCs isolated from different human tissue sources to differentiate into neuronal stem cells and dopaminergic-like cells. PeerJ. 2022;10:e13003. https://doi.org/10.7717/peerj.13003.
Article CAS PubMed PubMed Central Google Scholar
Alexander JK, Fuss B, Colello RJ. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2006;2(2):93–103. https://doi.org/10.1017/S1740925X0600010X.
Article PubMed PubMed Central Google Scholar
An B, Ma Y, Xu Y, Liu X, Zhang X, Zhang J, Yang C. Crocin regulates the proliferation and migration of neural stem cells after cerebral ischemia by activating the Notch1 pathway. Folia Neuropathol. 2020;58(3):201–12. https://doi.org/10.5114/fn.2020.100063.
Anderson M, Shelke NB, Manoukian OS, Yu X, McCullough LD, Kumbar SG. Peripheral nerve regeneration strategies: electrically stimulating polymer based nerve growth conduits. Crit Rev Biomed Eng. 2015;43(2–3):131–59. https://doi.org/10.1615/CritRevBiomedEng.2015014015.
Article PubMed PubMed Central Google Scholar
BahremandiTolou N, Salimijazi H, Kharaziha M, Faggio G, Chierchia R, Lisi N. A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone. Mater Sci Eng C Mater Biol Appl. 2021;126:112110. https://doi.org/10.1016/j.msec.2021.112110.
Baniasadi H, Ramazani S A A, Mashayekhan S. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol. 2015;74:360–6. https://doi.org/10.1016/j.ijbiomac.2014.12.014.
Article CAS PubMed Google Scholar
Barroca N, Marote A, Vieira SI, Almeida A, Fernandes MHV, Vilarinho PM, da Cruz E, Silva OAB. Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogenesis. Colloids Surf B Biointerfaces. 2018;167:93–103. https://doi.org/10.1016/j.colsurfb.2018.03.050.
Article CAS PubMed Google Scholar
Bertleff MJOE, Meek MF, Nicolai J-PA. A prospective clinical evaluation of biodegradable neurolac nerve guides for sensory nerve repair in the hand. J Hand Surg. 2005;30(3):513–8. https://doi.org/10.1016/j.jhsa.2004.12.009.
Blozovski D. Potentials evoked by the electric stimulation of the optic nerve in chick embryo. J Physiol. 1969;61(Suppl 2):225.
Boroujeni ME, Gardaneh M. Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res. 2017;12(7):1186–92. https://doi.org/10.4103/1673-5374.211201.
Article CAS PubMed PubMed Central Google Scholar
Burks SS, Diaz A, Haggerty AE, de la Oliva N, Midha R, Levi AD. Schwann cell delivery via a novel 3D collagen matrix conduit improves outcomes in critical length nerve gap repairs. J Neurosurg. 2021;135(4):1241–51. https://doi.org/10.3171/2020.8.JNS202349.
Article CAS PubMed Google Scholar
Catania F, Marras E, Giorcelli M, Jagdale P, Lavagna L, Tagliaferro A, Bartoli M. A review on recent advancements of graphene and graphene-related materials in biological applications. Appl Sci. 2021;11(2):2. https://doi.org/10.3390/app11020614.
Chato-Astrain J, Campos F, Roda O, Miralles E, Durand-Herrera D, Sáez-Moreno JA, García-García S, Alaminos M, Campos A, Carriel V. In vivo evaluation of nanostructured fibrin-agarose hydrogels with mesenchymal stem cells for peripheral nerve repair. Front Cell Neurosci. 2018;12:501. https://doi.org/10.3389/fncel.2018.00501.
Article CAS PubMed PubMed Central Google Scholar
Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, An Y. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med. 2014;12:253. https://doi.org/10.1186/s12967-014-0253-7.
Article PubMed PubMed Central Google Scholar
Cheng L-N, Duan X-H, Zhong X-M, Guo R-M, Zhang F, Zhou C-P, Shen J. Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury: assessment using MRI. AJR Am J Roentgenol. 2011;196(6):1381–7. https://doi.org/10.2214/AJR.10.5495.
Choi SJ, Park SY, Shin YH, Heo S-H, Kim K-H, Lee HI, Kim JK. Mesenchymal stem cells derived from Wharton’s jelly can differentiate into Schwann cell-like cells and promote peripheral nerve regeneration in acellular nerve grafts. Tissue Eng Regen Med. 2021;18(3):467–78. https://doi.org/10.1007/s13770-020-00329-6.
Article CAS PubMed PubMed Central Google Scholar
Conductive-polymers | Sigma-Aldrich (n.d.) Retrieved November 28, 2023, from https://www.sigmaaldrich.com/IN/en/search/conductive-polymers?focus=products&page=1&perpage=30&sort=relevance&term=conductive-polymers&type=product.
di Summa PG, Kingham PJ, Campisi CC, Raffoul W, Kalbermatten DF. Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci Lett. 2014;572:26–31. https://doi.org/10.1016/j.neulet.2014.04.029.
Article CAS PubMed Google Scholar
Do JL, Allahwerdy S, David RCC, Weinreb RN, Tuszynski MH, Welsbie DS. Optic nerve engraftment of neural stem cells. Invest Ophthalmol Vis Sci. 2021;62(9):30. https://doi.org/10.1167/iovs.62.9.30.
Article CAS PubMed PubMed Central Google Scholar
Dobrzański LA, Hudecki A, Chladek G, Król W, Mertas A. Biodegradable and antimicrobial polycaprolactone nanofibers with and without silver precipitates. Arch Mater Sci Eng. 2015;76(1):5–26.
Donoghoe N, Rosson GD, Dellon AL. Reconstruction of the human median nerve in the forearm with the Neurotube. Microsurgery. 2007;27(7):595–600. https://doi.org/10.1002/micr.20408.
Du L, Li T, Jin F, Wang Y, Li R, Zheng J, Wang T, Feng Z-Q. Design of high conductive and piezoelectric poly (3,4-ethylenedioxythiophene)/chitosan nanofibers for enhancing cellular electrical stimulation. J Colloid Interface Sci. 2020;559:65–75. https://doi.org/10.1016/j.jcis.2019.10.003.
Article CAS PubMed Google Scholar
Egeland BM, Urbanchek MG, Peramo A, Richardson-Burns SM, Martin DC, Kipke DR, Kuzon WM, Cederna PS. In vivo electrical conductivity across critical nerve gaps using poly(3,4-ethylenedioxythiophene)-coated neural interfaces. Plast Reconstr Surg. 2010;126(6):1865–73. https://doi.org/10.1097/PRS.0b013e3181f61848.
Article CAS PubMed Google Scholar
Escobar A, Serafin A, Carvalho MR, Culebras M, Cantarero A, Beaucamp A, Reis RL, Oliveira JM, Collins MN. Electroconductive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticle-loaded silk fibroin biocomposite conduits for peripheral nerve regeneration. Adv Compos Hybrid Mater. 2023;6(3):118. https://doi.org/10.1007/s42114-023-00689-2.
Fabbro A, Cellot G, Prato M, Ballerini L. Interfacing neurons with carbon nanotubes: (re)engineering neuronal signaling. Prog Brain Res. 2011;194:241–52. https://doi.org/10.1016/B978-0-444-53815-4.00003-0.
Farole A, Jamal BT. A bioabsorbable collagen nerve cuff (NeuraGen) for repair of lingual and inferior alveolar nerve injuries: a case series. J Oral Maxillofac Surg: Off J Am Assoc Oral Maxillofac Surgeons. 2008;66(10):2058–62. https://doi.org/10.1016/j.joms.2008.06.017.
Finkelstein E, Chang W, Chao P-HG, Gruber D, Minden A, Hung CT, Bulinski JC. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3T3 fibroblasts. J Cell Sci. 2004;117(8):1533–45. https://doi.org/10.1242/jcs.00986.
Article CAS PubMed Google Scholar
Gao T, Huang F, Wang W, Xie Y, Wang B. Interleukin-10 genetically modified clinical-grade mesenchymal stromal cells markedly reinforced functional recovery after spinal cord injury via directing alternative activation of macrophages. Cell Mol Biol Lett. 2022;27(1):27. https://doi.org/10.1186/s11658-022-00325-9.
Article CAS PubMed PubMed Central Google Scholar
Georgiou M, Bunting SCJ, Davies HA, Loughlin AJ, Golding JP, Phillips JB. Engineered neural tissue for peripheral nerve repair. Biomaterials. 2013;34(30):7335–43. https://doi.org/10.1016/j.biomaterials.2013.06.025.
Comments (0)