In Vivo Assessment of Silica-coated Titanium Implants for Improved Osseointegration: a Systematic Review

Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: Recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10.

Article  PubMed  PubMed Central  Google Scholar 

Einhorn TA, Gerstenfeld LC. Fracture healing: Mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54. https://doi.org/10.1038/nrrheum.2014.164.

Article  PubMed  Google Scholar 

Tzioupis C, Giannoudis PV. Prevalence of long-bone non-unions. Injury. 2007;38(SUPPL. 2):S3. https://doi.org/10.1016/j.injury.2007.02.005.

Article  PubMed  Google Scholar 

Anitua E, Prado R, Orive G, Tejero R. Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res - Part A. 2015;103(3):969–80. https://doi.org/10.1002/jbm.a.35240.

Article  CAS  Google Scholar 

Chrcanovic BR, Albrektsson T, Wennerberg A. Dental implants in irradiated versus non-irradiated patients: a meta-analysis. Laryngoscope. 2014;44:2–31.

Google Scholar 

Abu-Amer Y, Darwech I, Clohisy JC. Aseptic loosening of total joint replacements: Mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9:1–7. https://doi.org/10.1186/ar2170.

Article  CAS  Google Scholar 

A. A. John;, S. K. Jaganathan;, E. Supriyanto;, and A. Manikandan, “Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics,” Curr. Sci. [Internet], vol. 111, pp. 1003–1015, 2016, https://www.jstor.org/stable/24908502.

X. Hou et al., “Calcium Phosphate-Based Biomaterials for Bone Repair,” J. Funct. Biomater., vol. 13, no. 4, 2022, https://doi.org/10.3390/jfb13040187.

J. V. Calazans Neto, A. C. dos Reis, and M. L. da C. Valente, “Osseointegration in additive-manufactured titanium implants: A systematic review of animal studies on the need for surface treatment,” Heliyon, vol. 9, no. 6, 2023, https://doi.org/10.1016/j.heliyon.2023.e17105.

G. Cordioli, Z. Majzoub, A. Piattelli, and A. Scarano, “Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia.,” Int. J. Oral Maxillofac. Implants, vol. 15, no. 5, pp. 668–74, 2000, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/11055134.

Popa AC, et al. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry. Int J Nanomedicine. 2017;12:683–707. https://doi.org/10.2147/IJN.S123236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Touya et al., “In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review,” Bioengineering, vol. 9, no. 8, 2022, https://doi.org/10.3390/bioengineering9080388.

Chandran S, John A. Osseointegration of osteoporotic bone implants: Role of stem cells, Silica and Strontium - A concise review. J Clin Orthop Trauma. 2019;10:S32–6. https://doi.org/10.1016/j.jcot.2018.08.003.

Article  PubMed  Google Scholar 

Romero-Gavilan F, et al. Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surfaces B Biointerfaces. 2018;162:316–25. https://doi.org/10.1016/j.colsurfb.2017.11.072.

Article  CAS  PubMed  Google Scholar 

M. Martínez-Ibáñez et al., “Biological characterization of a new silicon based coating developed for dental implants,” J. Mater. Sci. Mater. Med., vol. 27, no. 4, 2016, https://doi.org/10.1007/s10856-016-5690-9.

Dettin M, et al. Evaluation of silicon dioxide-based coating enriched with bioactive peptides mapped on human vitronectin and fibronectin: In vitro and in vivo assays. Tissue Eng. 2006;12(12):3509–23. https://doi.org/10.1089/ten.2006.12.3509.

Article  CAS  PubMed  Google Scholar 

A. Chaudhari et al., “Bone tissue response to porous and functionalized titanium and silica based coatings,” PLoS One, vol. 6, no. 9, 2011, https://doi.org/10.1371/journal.pone.0024186.

Chaudhari A, Cardoso MV, Martens J, Vandamme K, Naert I, Duyck J. Bone tissue response to BMP-2 adsorbed on amorphous microporous silica implants. J Clin Periodontol. 2012;39(12):1206–13. https://doi.org/10.1111/jcpe.12005.

Article  CAS  PubMed  Google Scholar 

Preethanath RS, Rajesh P, Varma H, Anil S, Jansen JA, van den Beucken JJJP. Combined Treatment Effects Using Bioactive-Coated Implants and Ceramic Granulate in a Rabbit Femoral Condyle Model. Clin Implant Dent Relat Res. 2016;18(4):666–77. https://doi.org/10.1111/cid.12358.

Article  PubMed  Google Scholar 

Araújo-Gomes N, et al. Silica–gelatin hybrid sol–gel coatings: A proteomic study with biocompatibility implications. J Tissue Eng Regen Med. 2018;12(7):1769–79. https://doi.org/10.1002/term.2708.

Article  CAS  PubMed  Google Scholar 

Araújo-Gomes N, et al. Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem. 2018;23(3):459–70. https://doi.org/10.1007/s00775-018-1553-9.

Article  CAS  PubMed  Google Scholar 

Dinu C, et al. Bone quality around implants: a comparative study of coating with hydroxyapatite and SIO2-TIO2 of TI6AL7NB implants. Part Sci Technol. 2020;38(8):944–51. https://doi.org/10.1080/02726351.2019.1636916.

Article  CAS  Google Scholar 

Zhao Q, et al. Promotion of bone formation and antibacterial properties of titanium coated with porous Si/Ag-doped titanium dioxide. Front Bioeng Biotechnol. 2022;10:1–14. https://doi.org/10.3389/fbioe.2022.1001514.

Article  Google Scholar 

Jo YK, Choi BH, Kim CS, Cha HJ. Diatom-Inspired Silica Nanostructure Coatings with Controllable Microroughness Using an Engineered Mussel Protein Glue to Accelerate Bone Growth on Titanium-Based Implants. Adv Mater. 2017;29(46):1–9. https://doi.org/10.1002/adma.201704906.

Article  CAS  Google Scholar 

Vu AA, Robertson SF, Ke D, Bandyopadhyay A, Bose S. Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomater. 2019;92:325–35. https://doi.org/10.1016/j.actbio.2019.05.020.

Article  CAS  PubMed  Google Scholar 

Jensen M, Keding R, Höche T, Yue Y. Biologically formed mesoporous amorphous silica. J Am Chem Soc. 2009;131(7):2717–21. https://doi.org/10.1021/ja808847y.

Article  CAS  PubMed  Google Scholar 

X. Gao, M. Fraulob, and G. Haïat, “Biomechanical behaviours of the bone-implant interface: A review,” J. R. Soc. Interface, vol. 16, no. 156, 2019, https://doi.org/10.1098/rsif.2019.0259.

Shanbhag S, et al. Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs. Stem Cell Res Ther. 2021;12(1):1–17. https://doi.org/10.1186/s13287-021-02642-w.

Article  CAS  Google Scholar 

Sieber M, Simchen F, Morgenstern R, Scharf I, Lampke T. Plasma electrolytic oxidation of high-strength aluminium alloys—substrate effect on wear and corrosion performance. Metals (Basel). 2018;8(5):1–17. https://doi.org/10.3390/met8050356.

Article  CAS  Google Scholar 

Xie K, et al. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An in Vitro Study. Clin Orthop Relat Res. 2019;477(12):2772–82. https://doi.org/10.1097/CORR.0000000000000954.

Article  PubMed  PubMed Central  Google Scholar 

Mashtalyar DV, et al. Bioactive coatings formed on titanium by plasma electrolytic oxidation: Composition and properties. Materials (Basel). 2020;13(18):7–10. https://doi.org/10.3390/ma13184121.

Article  CAS  Google Scholar 

Ceratti DR, Louis B, Paquez X, Faustini M, Grosso D. A New Dip Coating Method to Obtain Large-Surface Coatings with a Minimum of Solution. Adv Mater. 2015;27(34):4958–62. https://doi.org/10.1002/adma.201502518.

Article  CAS  PubMed  Google Scholar 

Guner AT, Meran C. A review on plasma sprayed titanium and hydroxyapatite coatings on polyetheretherketone implants. Int J Surf Sci Eng. 2019;13(4):237–62. https://doi.org/10.1504/IJSURFSE.2019.103923.

Article  CAS  Google Scholar 

F. Sima, C. Ristoscu, L. Duta, O. Gallet, K. Anselme, and I. N. Mihailescu, Laser thin films deposition and characterization for biomedical applications. Elsevier Ltd, 2016.

Drevet R, Fauré J, Benhayoune H. Electrophoretic Deposition of Bioactive Glass Coatings for Bone Implant Applications: A Review. Coatings. 2024;14(9):1084. https://doi.org/10.3390/coatings14091084.

Article  CAS  Google Scholar 

Khvostov MV, et al. A study on biological properties of titanium implants coated with multisubstituted hydroxyapatite. Ceram Int. 2022;48(23):34780–92. https://doi.org/10.1016/j.ceramint.2022.08.067.

Article  CAS  Google Scholar 

Y. Bravo, A. M. Miranda, F. Hernandez-Tenorio, A. A. Sáez, and V. Paredes, “Osseointegration of Implants Through Ti Biofunctionalization with Biomass from Chlorella sorokiniana UTEX 1230 and Synechococcus sp. PCC 7002,” Int. J. Mol. Sci., vol. 25, no. 23, 2024, https://doi.org/10.3390/ijms252313161.

Kumar M, Kumar R, Kumar S. Coatings on orthopedic implants to overcome present problems and challenges: A focused review. Mater Today Proc. 2021;45:5269–76. https://doi.org/10.1016/j.matpr.2021.01.831.

Article  CAS  Google Scholar 

Reffitt DM, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127–35.

Comments (0)

No login
gif