Age and Sex Influence in a Murine Hindlimb Ischemia Model: Implications for Cell-Based Therapies Targeting Critical Limb Ischemia

Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, McDermott MM, Misra S, Ujueta F. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement From the American Heart Association. Circulation. 2021;144(9):e171–91.

Article  PubMed  PubMed Central  Google Scholar 

Aday AW, Matsushita K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ Res. 2021;128(12):1818–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eid MA, Mehta KS, Goodney PP. Epidemiology of peripheral artery disease. Semin Vasc Surg. 2021;34(1):38–46.

Article  PubMed  Google Scholar 

Anderson PB, Sen I, Welker CC, Rasmussen TE, Ramakrishna H. Critical Limb Ischemia: Update for the Cardiovascular Anesthesiologist. J Cardiothorac Vasc Anesth. 2022;36(10):3939–44.

Article  PubMed  Google Scholar 

Miller R, Ambler GK, Ramirez J, Rees J, Hinchliffe R, Twine C, Rudd S, Blazeby J, Avery K. Patient Reported Outcome Measures for Major Lower Limb Amputation Caused by Peripheral Artery Disease or Diabetes: A Systematic Review. Eur J Vasc Endovasc Surg. 2021;61(3):491–501.

Article  PubMed  Google Scholar 

Frangogiannis NG. Cell therapy for peripheral artery disease. Curr Opin Pharmacol. 2018;39:27–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

G. Van Zant, Stem Cell Sources, A Guide to Blood and Marrow Transplantation, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 27–34.

Rufaihah AJ, Huang NF, Jamé S, Lee JC, Nguyen HN, Byers B, De A, Okogbaa J, Rollins M, Reijo-Pera R, Gambhir SS, Cooke JP. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2011;31(11):e72–9.

Article  CAS  PubMed  Google Scholar 

Rigato M, Monami M, Fadini GP. Autologous Cell Therapy for Peripheral Arterial Disease: Systematic Review and Meta-Analysis of Randomized Nonrandomized, and Noncontrolled Studies. Circ Res. 2017;120(8):1326–40.

Article  CAS  PubMed  Google Scholar 

Rivard A, Silver M, Fabre J-E, Magner M, Kearney M, Isner JM. Diabetes impairs angiogenesis in limb ischemia. Circulation. 1997;96(8):969.

Google Scholar 

Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease A critical appraisal. Thromb Haemost. 2010;103(4):696–709.

Article  CAS  PubMed  Google Scholar 

Jeong I-H, Bae W-Y, Choi J-S, Jeong J-W. Ischemia induces autophagy of endothelial cells and stimulates angiogenic effects in a hindlimb ischemia mouse model. Cell Death Dis. 2020;11(8):624.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathiyalagan P, Liang Y, Kim D, Misener S, Thorne T, Kamide CE, Klyachko E, Losordo DW, Hajjar RJ, Sahoo S. Angiogenic Mechanisms of Human CD34<sup>+</sup> Stem Cell Exosomes in the Repair of Ischemic Hindlimb. Circ Res. 2017;120(9):1466–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, Teodorescu V, Wiechmann BN, Thompson C, Kraiss L, Carman T, Dohad S, Huang P, Junge CE, Story K, Weistroffer T, Thorne TM, Millay M, Runyon JP, Schainfeld R. A Randomized, Controlled Pilot Study of Autologous CD34+ Cell Therapy for Critical Limb Ischemia. Circ Cardiovasc Interv. 2012;5(6):821–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, Stern TP, Watling S, Bartel RL. Cellular Therapy With Ixmyelocel-T to Treat Critical Limb Ischemia: The Randomized Double-blind, Placebo-controlled RESTORE-CLI Trial. Mol Ther. 2012;20(6):1280–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ledford KJ, Murphy N, Zeigler F, Bartel RL, Tubo R. Therapeutic potential of ixmyelocel-T, an expanded autologous multicellular therapy for treatment of ischemic cardiovascular diseases. Stem Cell Res Ther. 2015;6(1):25.

Article  PubMed  PubMed Central  Google Scholar 

McDermott MM, Hoff F, Ferrucci L, Pearce WH, Guralnik JM, Tian L, Liu K, Schneider JR, Sharma L, Tan J, Criqui MH. Lower Extremity Ischemia, Calf Skeletal Muscle Characteristics, and Functional Impairment in Peripheral Arterial Disease. J Am Geriatr Soc. 2007;55(3):400–6.

Article  PubMed  PubMed Central  Google Scholar 

Mietus CJ, Lackner TJ, Karvelis PS, Willcockson GT, Shields CM, Lambert NG, Koutakis P, Fuglestad MA, Hernandez H, Haynatzki GR, Kim JKS, DeSpiegelaere HK, Pipinos GP II, Casale. Abnormal Microvascular Architecture, Fibrosis, and Pericyte Characteristics in the Calf Muscle of Peripheral Artery Disease Patients with Claudication and Critical Limb Ischemia. J Clin Med. 2020;9(8):2575.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDermott MM, Ferrucci L, Guralnik J, Tian L, Liu K, Hoff F, Liao Y, Criqui MH. Pathophysiological Changes in Calf Muscle Predict Mobility Loss at 2-Year Follow-Up in Men and Women With Peripheral Arterial Disease. Circulation. 2009;120(12):1048–55.

Article  PubMed  PubMed Central  Google Scholar 

Patel T, Baydoun H, Patel NK, Tripathi B, Nanavaty S, Savani S, Mojadidi MK, Agarwal N, Patel G, Patel S, Pancholy S. Peripheral Arterial Disease in Women: The Gender Effect. Cardiovasc Revasc Med. 2020;21(3):404–8.

Article  PubMed  Google Scholar 

Pabon M, Cheng S, Altin SE, Sethi SS, Nelson MD, Moreau KL, Hamburg N, Hess CN. Sex Differences in Peripheral Artery Disease. Circ Res. 2022;130(4):496–511.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinet P, Milewicz DM, Cassis LA, Leeper NJ, Lu HS, Smith JD. Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies—Statement From ATVB Council. Arterioscler Thromb Vasc Biol. 2018;38(2):292–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flórez-Vargas O, Brass A, Karystianis G, Bramhall M, Stevens R, Cruickshank S, Nenadic G. Bias in the reporting of sex and age in biomedical research on mouse models. Elife. 2016;5:e13615.

Article  PubMed  PubMed Central  Google Scholar 

Shireman PK, Quinones MP. Differential necrosis despite similar perfusion in mouse strains after ischemia. J Surg Res. 2005;129(2):242–50.

Article  PubMed  Google Scholar 

Podkalicka P, Mucha O, Kaziród K, Bronisz-Budzyńska I, Ostrowska-Paton S, Tomczyk M, Andrysiak K, Stępniewski J, Dulak J, Łoboda A. Age-Dependent Dysregulation of Muscle Vasculature and Blood Flow Recovery after Hindlimb Ischemia in the mdx Model of Duchenne Muscular Dystrophy. Biomedicines. 2021;9(5):481.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR. Direct Evidence of Endothelial Oxidative Stress With Aging in Humans. Circ Res. 2007;100(11):1659–66.

Article  CAS  PubMed  Google Scholar 

El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radical Biol Med. 2013;65:380–401.

Article  Google Scholar 

Chenu C, Adlanmerini M, Boudou F, Chantalat E, Guihot A-L, Toutain C, Raymond-Letron I, Vicendo P, Gadeau A-P, Henrion D, Arnal J-F, Lenfant F. Testosterone Prevents Cutaneous Ischemia and Necrosis in Males Through Complementary Estrogenic and Androgenic Actions. Arterioscler Thromb Vasc Biol. 2017;37(5):909–19.

Article  CAS  PubMed  Google Scholar 

Huang S, Liu L, Tang X, Xie S, Li X, Kang X, Zhu S. Research progress on the role of hormones in ischemic stroke. Front Immunol. 2022;13:1062977.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minn Y-K, Suk S-H. Higher skeletal muscle mass may protect against ischemic stroke in community-dwelling adults without stroke and dementia: The PRESENT project. BMC Geriatr. 2017;17(1):45.

Article 

Comments (0)

No login
gif