Regeneration of Bone Tissue Using Nanofibers Made from Electrospun Polycaprolactone (PCL) and a Hydrogel Composed of Alginate (Alg/PCL)

Lu X, et al. Insight into the roles of melatonin in bone tissue and bone-related diseases. Int J Mol Med. 2021;47(5):1–19.

Article  CAS  Google Scholar 

Gholijani A, et al. In situ casting of platelet rich Plasma/SiO2/Alginate for bone tissue engineering application in rabbit mandible defect model. J Dent. 2022;23(2 Suppl):349.

Google Scholar 

Łuczak JW, et al. The future of bone repair: emerging technologies and biomaterials in bone regeneration. Int J Mol Sci. 2024;25(23):12766.

Article  PubMed  PubMed Central  Google Scholar 

Emami A, Talaei-Khozani T, Tavanafar S, Zareifard N, Azarpira N, Vojdani Z. Synergic effects of decellularized bone matrix, hydroxyapatite, and extracellular vesicles on repairing of the rabbit mandibular bone defect model. J Transl Med. 2020;18:1–18.

Article  Google Scholar 

Ferraz MP. Bone grafts in dental medicine: an overview of autografts, allografts and synthetic materials. Materials. 2023;16(11):4117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Selim M, Mousa HM, Abdel-Jaber GT, Barhoum A, Abdal-hay A. Innovative designs of 3D scaffolds for bone tissue regeneration: understanding principles and addressing challenges. Eur Polym J. 2024;113251. https://doi.org/10.1016/j.eurpolymj.2024.113251.

Emami A, Talaei-Khozani T, Vojdani Z, Zarei Fard N. Comparative assessment of the efficiency of various decellularization agents for bone tissue engineering. J Biomed Mater Res Part B: Appl Biomater. 2021;109(1):19–32.

Article  CAS  Google Scholar 

Huang H-Y, et al. 3D poly-ε-caprolactone/graphene porous scaffolds for bone tissue engineering. 2020;606:125393.

Farshidfar N, Iravani S, Varma RS. Alginate-based biomaterials in tissue engineering and regenerative medicine. Mar Drugs. 2023;21(3):189.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishani M, Shin WY, Suhaimi H, Sambudi NS. Development of scaffolds from bio-based natural materials for tissue regeneration applications: a review. Gels. 2023;9(2):100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaspar VM, Moreira AF, Melo-Diogo Dd, Costa EC. Multifunctional nanocarriers for codelivery of nucleic acids and chemotherapeutics to cancer cells. In: Nanobiomaterials in medical imaging. Elsevier; 2016. p. 163–207.

Akhtar A, Rad VF, Moradi A-R, Yar M, Bazzar M. Emerging polymeric biomaterials and manufacturing-based tissue engineering approaches for neuro regeneration-A critical review on recent effective approaches. Smart Mater Med. 2023;4:337–55.

Google Scholar 

Azari A, Golchin A, Maymand MM, Mansouri F, Ardeshirylajimi A. Electrospun polycaprolactone nanofibers: current research and applications in biomedical application. Adv Pharmaceutical Bull. 2022;12(4):658.

CAS  Google Scholar 

Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio. 2023;21:100710.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anjum S, et al. Electrospun biomimetic nanofibrous scaffolds: a promising prospect for bone tissue engineering and regenerative medicine. Int J Mol Sci. 2022;23(16):9206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anjum S, et al. Multifunctional electrospun nanofibrous scaffold enriched with alendronate and hydroxyapatite for balancing osteogenic and osteoclast activity to promote bone regeneration. Front Bioeng Biotechnol. 2023;11:1302594.

Article  PubMed  PubMed Central  Google Scholar 

Raus RA, Nawawi WMFW, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci. 2021;16(3):280–306.

Google Scholar 

Hurtado A, Aljabali AA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: enhancement strategies for advanced applications. Int J Mol Sci. 2022;23(9):4486.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jarrah RM, et al. Alginate hydrogels: a potential tissue engineering intervention for intervertebral disc degeneration. J Clin Neurosci. 2023;113:32–7.

Article  CAS  PubMed  Google Scholar 

Bastos AR, et al. Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues. Int J Biol Macromol. 2024;271:132611.

Article  CAS  PubMed  Google Scholar 

Mobini S, Solati-Hashjin M, Hesaraki S, Gelinsky M. Fabrication and characterization of regenerated silk/bioglass composites for bone tissue engineering. Pathobiol Res. 2012;15(2):47–60.

Google Scholar 

Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of electrospun nanofiber for bone tissue engineering. Polymers. 2022;14(14):2940.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niemczyk-Soczynska B, Zaszczyńska A, Zabielski K, Sajkiewicz P. Hydrogel, electrospun and composite materials for bone/cartilage and neural tissue engineering. Materials. 2021;14(22):6899.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Omidian H, Gill EJ. Nanofibrous scaffolds in biomedicine. J Compos Sci. 2024;8(7):269.

Article  CAS  Google Scholar 

Esmaeili J, et al. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: a review. Int J Biol Macromol. 2024;132941. https://doi.org/10.1016/j.ijbiomac.2024.132941.

Jiang Z, et al. Nanofiber scaffolds as drug delivery systems promoting wound healing. Pharmaceutics. 2023;15(7):1829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dharmaraj D, Chavan N, Likhitha U, Nayak UY. Electrospun nanofibers for dermatological delivery. J Drug Deliv Technol. 2024;105981. https://doi.org/10.1016/j.jddst.2024.105981.

Echeverria Molina MI, Malollari KG, Komvopoulos K. Design challenges in polymeric scaffolds for tissue engineering. Front Bioeng Biotechnol. 2021;9:617141. https://doi.org/10.3389/fbioe.2021.617141.

Article  PubMed  PubMed Central  Google Scholar 

Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of electrospinning for tissue engineering applications. Polymers. 2023;15(11):2418.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Prog Polym Sci. 2010;35(3):338–56.

Article  CAS  Google Scholar 

Todd EA, et al. Functional scaffolds for bone tissue regeneration: a comprehensive review of materials, methods, and future directions. J Funct Biomater. 2024;15(10):280.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tupe A, et al. Recent advances in biomaterial-based scaffolds for guided bone tissue engineering: challenges and future directions. Polym Adv Technol. 2024;35(11):e6619.

Article  CAS  Google Scholar 

Serafin A, Culebras M, Collins MN. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. Int J Biol Macromol. 2023;233:123438.

Article  CAS  PubMed  Google Scholar 

Tanvir MAH, Khaleque MA, Kim G-H, Yoo W-Y, Kim Y-Y. The role of bioceramics for bone regeneration: history, mechanisms, and future perspectives. Biomimetics. 2024;9(4):230.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shanmugavadivu A, Lekhavadhani S, Babu S, Suresh N, Selvamurugan N. Magnesium-incorporated biocomposite scaffolds: a novel frontier in bone tissue engineering. J Magnes Alloy. 2024. https://doi.org/10.1016/j.jma.2024.06.001.

Article  Google Scholar 

Alonzo M, et al. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr Opin Biomed Eng. 2021;17:100248.

Article  CAS  PubMed 

Comments (0)

No login
gif