Krambeck K, Santos D, Sousa Lobo JM, Amaral MH. Benefits of skin application of piceatannol—a minireview. Australas J Dermatol. 2023;64(1):e21–5.
Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the complexity of human skin in vitro. Biomedicines. 2023;11(3):794.
Article CAS PubMed PubMed Central Google Scholar
Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. Emerging treatment strategies in wound care. Int Wound J. 2022;19(7):1934–54.
Article PubMed PubMed Central Google Scholar
Raza AA, Ibrahim M, Ishfaq R, Saleem I, Altaf MA, Asmat U. Incidence, clinical evaluation and antibiogram of bacterial isolates obtained from burn patients. Pak J Med Health Sci. 2022;16(10):282–282.
Greenhalgh DG. Management of burns. N Engl J Med. 2019;380(24):2349–59.
Babaluei M, Mojarab Y, Mottaghitalab F, Farokhi M. Injectable hydrogel based on silk fibroin/carboxymethyl cellulose/agarose containing polydopamine functionalized graphene oxide with conductivity, hemostasis, antibacterial, and anti-oxidant properties for full-thickness burn healing. Int J Biol Macromol. 2023;249(2023):126051.
Article CAS PubMed Google Scholar
Yi X, He J, Wei X, Li H, Liu X, Cheng F. A mussel-inspired multifunctional hydrogel reinforced by bacterial cellulose for wound healing: sustained drug release, enhanced adhesion and self-healing property. Cellulose. 2023;30(2023):1–16.
Rezvani Ghomi E, Niazi M, Ramakrishna S. The evolution of wound dressings: from traditional to smart dressings. Polym Adv Technol. 2023;34(2):520–30.
Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: synthesis, materials and evaluation. Europeon Polym J. 2020;130(2020):109609.
Rahimi M, Noruzi EB, Sheykhsaran E, Ebadi B, Kariminezhad Z, Molaparast M, Mehrabani MG, Mehramouz B, Yousefi M, Ahmadi R, Yousefi B, Kafil HS. Carbohydrate polymer-based silver nanocomposites: recent progress in the antimicrobial wound dressings. Carbohyd Polym. 2020;231(2020):115696.
Rashdan HR, El-Naggar ME. Traditional and modern wound dressings—characteristics of ideal wound dressings. In: Khan R Gowri S, editors. Developments in Applied Microbiology and Biotechnology: Antimicrobial Dressings. Academic Press; 2023. p. 21–42). https://doi.org/10.1016/B978-0-323-95074-9.00002-6.
Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021;15(8):12687–722.
Article CAS PubMed Google Scholar
Cao H, Xiang D, Zhou X, Yue P, Zou Y, Zhong Z, Ma Y, Wang L, Wu S, Ye Q. High-strength, antibacterial, antioxidant, hemostatic, and biocompatible chitin/PEGDE-tannic acid hydrogels for wound healing. Carbohyd Polym. 2023;307(2023):120609.
Qi L, Zhang C, Wang B, Yin J, Yan S. Progress in hydrogels for skin wound repair. Macromol Biosci. 2022;22(7):2100475.
Jimenez JC, Agnew PS, Mayer P, Clements JR, Caporusso JM, Lange DL, Dickerson JE Jr, Slade HB. Enzymatic debridement of chronic nonischemic diabetic foot ulcers: results of a randomized, controlled trial. Wounds. 2017;29(5):133–9.
Zheng BD, Ye J, Yang YC, Huang YY, Xiao MT. Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohyd Polym. 2022;275(2022):118770.
Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(4):15–9.
Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng, C. 2017;79(2017):958–71.
Fan H, Gong JP. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules. 2020;53(8):2769–82.
Arango MC, Montoya Y, Peresin MS, Bustamante J, Álvarez-López C. Silk sericin as a biomaterial for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2021;70(16):1115–29.
Prakash M, Mathikere Naganna C, Radhakrishnan V, Somayaji P, Sabu L. Therapeutic potential of silkworm sericin in wound healing applications. Wound Repair Regen. 2024;32(6):916–40.
Balcão VM, Harada LK, Jorge LR, Oliveira JM Jr, Tubino M, Vila MM. Structural and functional stabilization of sericin from Bombyx mori cocoons in a biopolysaccharide film: Bioorigami for skin regeneration. J Braz Chem Soc. 2020;31(2020):833–48.
Elella MHA, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, Yoon KR. Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Environ Chem Eng. 2021;9(1):104702.
Sayed U, Deshmukh I. Application of herbs for wound dressings—review. Int J Adv Eng. 2021;7(2021):1843–8.
Bahramsoltani R, Farzaei MH, Rahimi R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res. 2014;306:601–17.
Article CAS PubMed Google Scholar
Gupta V, Keshari BB. Withania coagulans Dunal (paneer doda): a review. Int J Ayurvedic Herb Med. 2013;3(5):1330–6.
Ningrum DR, Hanif W, Mardhian DF, Asri LA. In vitro biocompatibility of hydrogel polyvinyl alcohol/Moringa oleifera leaf extract/graphene oxide for wound dressing. Polymers. 2023;15(2):468.
Article CAS PubMed PubMed Central Google Scholar
Peerzade N, Sayed N, Das N. Antimicrobial and phytochemical screening of methanolic fruit extract of Withania coagulans L. Dunal for evaluating the antidiabetic activity. Pharma Innov J. 2018;7:197–204.
Sarbishegi M, Khani M, Salimi S, Valizadeh M, Aval FS. Antiproliferative and antioxidant effects of withania coagulans extract on benign prostatic hyperplasia in rats. Nephro-Urol Mon. 2016;8(1):e33180. https://doi.org/10.5812/numonthly.33180.
Meeran SB, Subburaya U, Narasimhan G. In silico and in vitro screening of ethanolic extract of fruits of Withania coagulans against diabetes. Res J Pharm Technol. 2020;13(2):631–5.
Asghar A, Aamir MN, Shah MA, Syed SK, Munir R. Development, characterization and evaluation of in vitro anti-inflammatory activity of Withania coagulans extract and extract loaded microemulsion. Pak J Pharm Sci. 2021;34(2021):473–9.
Sharma S, Joshi A, Hemalatha S. Protective effect of Withania coagulans fruit extract on cisplatin-induced nephrotoxicity in rats. Pharmacogn Res. 2017;9(4):354.
Ahmad R, Fatima A, Srivastava AN, Khan MA. Evaluation of apoptotic activity of Withania coagulans methanolic extract against human breast cancer and Vero cell lines. J Ayurveda Integr Med. 2017;8(3):177–83.
Article PubMed PubMed Central Google Scholar
Munir F, Tahir HM, Ali S, Ali A, Tehreem A, Zaidi SDES, Adnan M, Ijaz F. Characterization and evaluation of silk sericin-based hydrogel: a promising biomaterial for efficient healing of acute wounds. ACS Omega. 2023;8(35):32090–8.
Article CAS PubMed PubMed Central Google Scholar
Tao G, Cai R, Wang Y, Liu L, Zuo H, Zhao P, Umar A, Mao C, Xia Q, He H. Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Mater Des. 2019;180(2019):107940.
Gulrez SK, Al-Assaf S, Fang Y, Phillips GO, Gunning AP. Revisiting the conformation of xanthan and the effect of industrially relevant treatments. Carbohyd Polym. 2012;90(3):1235–43.
Moffat J, Morris VJ, Al-Assaf S, Gunning AP. Visualisation of xanthan conformation by atomic force microscopy. Carbohyd Polym. 2016;148(2016):380–9.
Comments (0)