Formulation and Evaluation of Silk Sericin and Xanthan Gum–Based Injectable Hydrogels for the Treatment of Burn Wound

Krambeck K, Santos D, Sousa Lobo JM, Amaral MH. Benefits of skin application of piceatannol—a minireview. Australas J Dermatol. 2023;64(1):e21–5.

Article  PubMed  Google Scholar 

Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the complexity of human skin in vitro. Biomedicines. 2023;11(3):794.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. Emerging treatment strategies in wound care. Int Wound J. 2022;19(7):1934–54.

Article  PubMed  PubMed Central  Google Scholar 

Raza AA, Ibrahim M, Ishfaq R, Saleem I, Altaf MA, Asmat U. Incidence, clinical evaluation and antibiogram of bacterial isolates obtained from burn patients. Pak J Med Health Sci. 2022;16(10):282–282.

Article  Google Scholar 

Greenhalgh DG. Management of burns. N Engl J Med. 2019;380(24):2349–59.

Article  PubMed  Google Scholar 

Babaluei M, Mojarab Y, Mottaghitalab F, Farokhi M. Injectable hydrogel based on silk fibroin/carboxymethyl cellulose/agarose containing polydopamine functionalized graphene oxide with conductivity, hemostasis, antibacterial, and anti-oxidant properties for full-thickness burn healing. Int J Biol Macromol. 2023;249(2023):126051.

Article  CAS  PubMed  Google Scholar 

Yi X, He J, Wei X, Li H, Liu X, Cheng F. A mussel-inspired multifunctional hydrogel reinforced by bacterial cellulose for wound healing: sustained drug release, enhanced adhesion and self-healing property. Cellulose. 2023;30(2023):1–16.

Google Scholar 

Rezvani Ghomi E, Niazi M, Ramakrishna S. The evolution of wound dressings: from traditional to smart dressings. Polym Adv Technol. 2023;34(2):520–30.

Article  CAS  Google Scholar 

Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: synthesis, materials and evaluation. Europeon Polym J. 2020;130(2020):109609.

Article  CAS  Google Scholar 

Rahimi M, Noruzi EB, Sheykhsaran E, Ebadi B, Kariminezhad Z, Molaparast M, Mehrabani MG, Mehramouz B, Yousefi M, Ahmadi R, Yousefi B, Kafil HS. Carbohydrate polymer-based silver nanocomposites: recent progress in the antimicrobial wound dressings. Carbohyd Polym. 2020;231(2020):115696.

Article  CAS  Google Scholar 

Rashdan HR, El-Naggar ME. Traditional and modern wound dressings—characteristics of ideal wound dressings. In: Khan R Gowri S, editors. Developments in Applied Microbiology and Biotechnology: Antimicrobial Dressings. Academic Press; 2023. p. 21–42). https://doi.org/10.1016/B978-0-323-95074-9.00002-6.

Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021;15(8):12687–722.

Article  CAS  PubMed  Google Scholar 

Cao H, Xiang D, Zhou X, Yue P, Zou Y, Zhong Z, Ma Y, Wang L, Wu S, Ye Q. High-strength, antibacterial, antioxidant, hemostatic, and biocompatible chitin/PEGDE-tannic acid hydrogels for wound healing. Carbohyd Polym. 2023;307(2023):120609.

Article  CAS  Google Scholar 

Qi L, Zhang C, Wang B, Yin J, Yan S. Progress in hydrogels for skin wound repair. Macromol Biosci. 2022;22(7):2100475.

Article  CAS  Google Scholar 

Jimenez JC, Agnew PS, Mayer P, Clements JR, Caporusso JM, Lange DL, Dickerson JE Jr, Slade HB. Enzymatic debridement of chronic nonischemic diabetic foot ulcers: results of a randomized, controlled trial. Wounds. 2017;29(5):133–9.

PubMed  Google Scholar 

Zheng BD, Ye J, Yang YC, Huang YY, Xiao MT. Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohyd Polym. 2022;275(2022):118770.

Article  CAS  Google Scholar 

Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(4):15–9.

Article  Google Scholar 

Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng, C. 2017;79(2017):958–71.

Article  CAS  Google Scholar 

Fan H, Gong JP. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules. 2020;53(8):2769–82.

Article  CAS  Google Scholar 

Arango MC, Montoya Y, Peresin MS, Bustamante J, Álvarez-López C. Silk sericin as a biomaterial for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2021;70(16):1115–29.

Article  CAS  Google Scholar 

Prakash M, Mathikere Naganna C, Radhakrishnan V, Somayaji P, Sabu L. Therapeutic potential of silkworm sericin in wound healing applications. Wound Repair Regen. 2024;32(6):916–40.

Article  PubMed  Google Scholar 

Balcão VM, Harada LK, Jorge LR, Oliveira JM Jr, Tubino M, Vila MM. Structural and functional stabilization of sericin from Bombyx mori cocoons in a biopolysaccharide film: Bioorigami for skin regeneration. J Braz Chem Soc. 2020;31(2020):833–48.

Google Scholar 

Elella MHA, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, Yoon KR. Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Environ Chem Eng. 2021;9(1):104702.

Article  Google Scholar 

Sayed U, Deshmukh I. Application of herbs for wound dressings—review. Int J Adv Eng. 2021;7(2021):1843–8.

Article  CAS  Google Scholar 

Bahramsoltani R, Farzaei MH, Rahimi R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res. 2014;306:601–17.

Article  CAS  PubMed  Google Scholar 

Gupta V, Keshari BB. Withania coagulans Dunal (paneer doda): a review. Int J Ayurvedic Herb Med. 2013;3(5):1330–6.

Google Scholar 

Ningrum DR, Hanif W, Mardhian DF, Asri LA. In vitro biocompatibility of hydrogel polyvinyl alcohol/Moringa oleifera leaf extract/graphene oxide for wound dressing. Polymers. 2023;15(2):468.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peerzade N, Sayed N, Das N. Antimicrobial and phytochemical screening of methanolic fruit extract of Withania coagulans L. Dunal for evaluating the antidiabetic activity. Pharma Innov J. 2018;7:197–204.

CAS  Google Scholar 

Sarbishegi M, Khani M, Salimi S, Valizadeh M, Aval FS. Antiproliferative and antioxidant effects of withania coagulans extract on benign prostatic hyperplasia in rats. Nephro-Urol Mon. 2016;8(1):e33180. https://doi.org/10.5812/numonthly.33180.

Article  Google Scholar 

Meeran SB, Subburaya U, Narasimhan G. In silico and in vitro screening of ethanolic extract of fruits of Withania coagulans against diabetes. Res J Pharm Technol. 2020;13(2):631–5.

Article  Google Scholar 

Asghar A, Aamir MN, Shah MA, Syed SK, Munir R. Development, characterization and evaluation of in vitro anti-inflammatory activity of Withania coagulans extract and extract loaded microemulsion. Pak J Pharm Sci. 2021;34(2021):473–9.

CAS  PubMed  Google Scholar 

Sharma S, Joshi A, Hemalatha S. Protective effect of Withania coagulans fruit extract on cisplatin-induced nephrotoxicity in rats. Pharmacogn Res. 2017;9(4):354.

Article  CAS  Google Scholar 

Ahmad R, Fatima A, Srivastava AN, Khan MA. Evaluation of apoptotic activity of Withania coagulans methanolic extract against human breast cancer and Vero cell lines. J Ayurveda Integr Med. 2017;8(3):177–83.

Article  PubMed  PubMed Central  Google Scholar 

Munir F, Tahir HM, Ali S, Ali A, Tehreem A, Zaidi SDES, Adnan M, Ijaz F. Characterization and evaluation of silk sericin-based hydrogel: a promising biomaterial for efficient healing of acute wounds. ACS Omega. 2023;8(35):32090–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao G, Cai R, Wang Y, Liu L, Zuo H, Zhao P, Umar A, Mao C, Xia Q, He H. Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Mater Des. 2019;180(2019):107940.

Article  CAS  Google Scholar 

Gulrez SK, Al-Assaf S, Fang Y, Phillips GO, Gunning AP. Revisiting the conformation of xanthan and the effect of industrially relevant treatments. Carbohyd Polym. 2012;90(3):1235–43.

Article  CAS  Google Scholar 

Moffat J, Morris VJ, Al-Assaf S, Gunning AP. Visualisation of xanthan conformation by atomic force microscopy. Carbohyd Polym. 2016;148(2016):380–9.

Article  CAS  Google Scholar 

Comments (0)

No login
gif