Cooper LT (2009) Myocarditis. New Engl J Med 360(15):1526–38
Article CAS PubMed Google Scholar
Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A et al (2012) Update on myocarditis. J Am Coll Cardiol 59(9):779–92
Kyaw T, Drummond GR, Bobik A, Peter K (2023) Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 27(3):225–238
Article CAS PubMed Google Scholar
Matsumori A (1996) Cytokines in myocarditis and cardiomyopathies. Curr Opin Cardiol 11(3):302–309
Article CAS PubMed Google Scholar
Gebhard JR, Perry CM, Harkins S, Lane T, Mena I, Asensio VC et al (1998) Coxsackievirus B3-induced myocarditis: perforin exacerbates disease, but plays no detectable role in virus clearance. Am J Pathol 153(2):417–28
Article CAS PubMed PubMed Central Google Scholar
Mayo Clinic. Myocarditis - symptoms and causes. Mayo Clinic. 2019. [Internet] Available from: https://www.mayoclinic.org/diseases-conditions/myocarditis/symptoms-causes/syc-20352539
Caforio ALP, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB et al (2013) Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 34(33):2636–2648
Wang YWY, Liu RB, Huang CY, Li HY, Zhang ZX, Li XZ et al (2023) Global, regional, and national burdens of myocarditis, 1990–2019: systematic analysis from GBD 2019: GBD for myocarditis. BMC Public Health 23(1):714
Article PubMed PubMed Central Google Scholar
Wang X, Bu X, Wei L, Liu J, Yang D, Mann DL et al (2021) Global, regional, and national burden of myocarditis from 1990 to 2017: a systematic analysis based on the global burden of disease study 2017. Front Cardiovasc Med 2:8
Fu M, Kontogeorgos S, Thunström E, Zverkova Sandström T, Kroon C, Bollano E et al (2022) Trends in myocarditis incidence, complications and mortality in Sweden from 2000 to 2014. Sci Rep 12(1):1810
Article CAS PubMed PubMed Central Google Scholar
Chong JH, Abdulkareem M, Petersen SE, Khanji MY (2022) Artificial intelligence and cardiovascular magnetic resonance imaging in myocardial infarction patients. Curr Prob Cardiol 47(12):101330
Laumer F, Di Vece D, Cammann VL, Würdinger M, Petkova V, Schönberger M, Schönberger A et al (2022) Assessment of artificial intelligence in echocardiography diagnostics in differentiating takotsubo syndrome from myocardial infarction. BMC Bioinform 7(5):494–4
Liu R, Wang M, Tang Z, Zhang R, Li N, Chen Z et al (2022) An artificial intelligence-based risk prediction model of myocardial infarction. BMC Bioinform 23(1):217. https://doi.org/10.1186/s12859-022-04761-4
Feeny AK, Chung MK, Madabhushi A, Attia ZI, Cikes M, Firouznia M et al (2020) Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology. Circ Arrhythmia Electrophysiol 13(8):e007952. https://doi.org/10.1161/CIRCEP.119.007952
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71
Luo Y, Xu L, Qi L (2021) A cascaded FC-DenseNet and level set method (FCDL) for fully automatic segmentation of the right ventricle in cardiac MRI. Med Biol Eng Compu 59(3):561–574
Zhu QK (2023) A novel method for myocardial image classification using data augmentation. Int J Adv Comput Sci Appl 14(6). https://doi.org/10.14569/IJACSA.2023.0140695
Kanjee Zahir, Crowe B, Rodman A (2023) Accuracy of a generative artificial intelligence model in a complex diagnostic challenge. JAMA 330(1):78–8
Article PubMed PubMed Central Google Scholar
Attia ZI, Kapa S, Noseworthy PA, Lopez-Jimenez F, Friedman PA (2020) Artificial intelligence ECG to detect left ventricular dysfunction in COVID-19. Mayo Clin Proc 95(11):2464–2466
Article CAS PubMed Google Scholar
Barbaroux H, Kunze KP, Neji R, Nazir MS, Pennell DJ, Nielles-Vallespin S et al (2023) Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks. J Cardiovasc Magn Resonance 25(1):16
Rahman SSMM, Chen Z, Lalande A, Decourselle T, Cochet A, Pommier T et al (2023) Automatic classification of patients with myocardial infarction or myocarditis based only on clinical data: a quick response. PloS One 18(5):e0285165
Article CAS PubMed PubMed Central Google Scholar
Zaman S, Petri C, Vimalesvaran K, Howard J, Bharath A, Francis D et al (2022) Automatic diagnosis labeling of cardiovascular MRI by using semisupervised natural language processing of text reports. Radiol Artif Intell 4(1):e210085
Wu L, Guo S, Han L, Song X, Zhao Z, Cekderi AB (2023) Autonomous detection of myocarditis based on the fusion of improved quantum genetic algorithm and adaptive differential evolution optimization back propagation neural network. Health Inf Sci Syst. 11(1):33
Sharifrazi D, Alizadehsani R, Joloudari JH, Band SS, Hussain S, Sani ZA et al (2022) CNN-KCL: automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering. Math Biosci Eng 19(3):2381–2402
Borodyansky IM (2022) Decision support system in radiology for fast diagnostics of thoracic diseases under COVID-19 pandemic conditions. Cardiometry 21:50–54
Masutani E, Chandrupatla RS, Wang S, Zocchi C, Hahn LD, Horowitz M et al (2023) Deep learning synthetic strain: quantitative assessment of regional myocardial wall motion at MRI. Radiology. 5(3):e220202
PubMed PubMed Central Google Scholar
Yuan WF, Zhao X, Hu F, Bai C, Tang F (2019) Evaluation of early gadolinium enhancement (EGE) and cardiac functional parameters in cine-magnetic resonance imaging (MRI) on artificial intelligence in patients with acute myocarditis: a case-controlled observational study. Med Sci Monit 24(25):5493–5500
Böttcher B, Beller E, Busse A, Cantré D, Yücel S, Öner A et al (2020) Fully automated quantification of left ventricular volumes and function in cardiac MRI: clinical evaluation of a deep learning-based algorithm. Int J Cardiovasc Imaging 36(11):2239–2247
Article PubMed PubMed Central Google Scholar
Cau R, Pisu F, Porcu M, Cademartiri F, Montisci R, Bassareo P et al (2023) Machine learning approach in diagnosing takotsubo cardiomyopathy: the role of the combined evaluation of atrial and ventricular strain, and parametric mapping. Int J Cardiol. 373:124–33
Cavallo AU, Di Donna C, Troisi J, Cerimele C, Cesareni M, Chiocchi M et al (2022) Radiomics analysis of short tau inversion recovery images in cardiac magnetic resonance for the prediction of late gadolinium enhancement in patients with acute myocarditis. Magn Reson Imaging 94:168–173
Article CAS PubMed Google Scholar
Di Noto T, von Spiczak J, Mannil M, Gantert E, Soda P, Manka R et al (2019) Radiomics for distinguishing myocardial infarction from myocarditis at late gadolinium enhancement at MRI: comparison with subjective visual analysis. Radiology. 1(5):e180026
PubMed PubMed Central Google Scholar
Moravvej SV, Alizadehsani R, Khanam S, Sobhaninia Z, Shoeibi A, Khozeimeh F et al (2022) RLMD-PA: a reinforcement learning-based myocarditis diagnosis combined with a population-based algorithm for pretraining weights. Contrast Media Mol Imaging 2022:1–15
Kim H, Yang YJ, Han K, Kim PK, Choi BW, Kim JY et al (2023) Validation of a deep learning-based software for automated analysis of T2 mapping in cardiac magnetic resonance imaging. Quant Imaging Med Surg. 13(10):6750–60
Article PubMed PubMed Central Google Scholar
Li Y, Yang M, Li Z, Zhao Y, Jiang D, Cui L et al (2019) Detection and diagnosis of myocarditis in young patients using ECG analysis based on artificial neural networks. Computing 102(1):1–18
Urmeneta Ulloa J, Martínez de Vega V, Álvarez Vázquez A, Andreu-Vázquez C, Thuissard-Vasallo IJ, Recio Rodríguez M et al (2023) Comparative cardiac magnetic resonance-based feature tracking and deep-learning strain assessment in patients hospitalized for acute myocarditis. J Clin Med 12(3):1113
Article CAS PubMed PubMed Central Google Scholar
Cuadros J, Dugarte N, Wong S, Vanegas P, Morocho V, Medina R (2019) ECG multilead QT interval estimation using support vector machines. J Healthc Eng 15(2019):1–14
Comments (0)