Gegechkori N, Haines L, Lin JJ (2017) Long Term and Latent Side Effects of Specific Cancer Types. Med Clin North Am 101(6):1053–1073
Article PubMed PubMed Central Google Scholar
Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D et al (2016) Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin 66(4):309–325
Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH (2007) Congestive Heart Failure in Older Women Treated With Adjuvant Anthracycline Chemotherapy for Breast Cancer. J Clin Oncol 25(25):3808–3815
Article CAS PubMed Google Scholar
Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM et al (2014) Aging and Risk of Severe, Disabling, Life-Threatening, and Fatal Events in the Childhood Cancer Survivor Study. J Clin Oncol 32(12):1218–1227
Article PubMed PubMed Central Google Scholar
Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V et al (2005) Reversibility of Trastuzumab-Related Cardiotoxicity: New Insights Based on Clinical Course and Response to Medical Treatment. J Clin Oncol 23(31):7820–7826
Article CAS PubMed Google Scholar
American College of Cardiology [Internet]. [cited 2025 Jan 17]. Type I and Type II Cardiomyopathy Classifications Are Complete Nonsense: PRO. Available from: https://www.acc.org/latest-in-cardiology/articles/2018/05/04/08/41/http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2farticles%2f2018%2f05%2f04%2f08%2f41%2ftype-i-and-type-ii-cardiomyopathy-classifications-are-complete-nonsense-pro
Sawyer DB, Zuppinger C, Miller TA, Eppenberger HM, Suter TM (2002) Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 105(13):1551–1554
Article CAS PubMed Google Scholar
Suter TM, Ewer MS (2013) Cancer drugs and the heart: importance and management. Eur Heart J 34(15):1102–1111
Article CAS PubMed Google Scholar
Florescu M, Cinteza M, Vinereanu D (2013) Chemotherapy-induced Cardiotoxicity. Maedica 8(1):59–67
PubMed PubMed Central Google Scholar
Shakir DK, Rasul KI (2009) Chemotherapy Induced Cardiomyopathy: Pathogenesis, Monitoring and Management. J Clin Med Res 1(1):8–12
CAS PubMed PubMed Central Google Scholar
Volkova M, Russell R (2011) Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment. Curr. Cardiol Rev 7(4):214–220
Zamorano JL, Gottfridsson C, Asteggiano R, Atar D, Badimon L, Bax JJ et al (2020) The cancer patient and cardiology. Eur J Heart Fail 22(12):2290–2309
Lancellotti P, Suter TM, López-Fernández T, Galderisi M, Lyon AR, Van der Meer P et al (2019) Cardio-Oncology Services: rationale, organization, and implementation. Eur Heart J 40(22):1756–1763
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J et al (2022) 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). Eur Heart J 43(41):4229–4361
Koutsoukis A, Ntalianis A, Repasos E, Kastritis E, Dimopoulos MA, Paraskevaidis I (2018) Cardio-oncology: A Focus on Cardiotoxicity. Eur Cardiol Rev 13(1):64–69
Ewer MS, Ewer SM (2015S) Cardiotoxicity of anticancer treatments. Nat Rev Cardiol 12(9):547–558
Article CAS PubMed Google Scholar
Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin. Cancer 97(11):2869–2879
Article CAS PubMed Google Scholar
Menna P, Salvatorelli E, Minotti G (2010) Anthracycline Degradation in Cardiomyocytes: A Journey to Oxidative Survival. Chem Res Toxicol 23(1):6–10
Article CAS PubMed Google Scholar
Agunbiade TA, Zaghlol RY, Barac A (2019) Heart Failure in Relation to Anthracyclines and Other Chemotherapies. Methodist DeBakey Cardiovasc J 15(4):243–249
Article PubMed PubMed Central Google Scholar
Narezkina A, Narayan HK, Zemljic-Harpf AE (2021) Molecular mechanisms of anthracycline cardiovascular toxicity. Clin Sci 135(10):1311–1332
Jurczyk M, Król M, Midro A, Kurnik-Łucka M, Poniatowski A, Gil K (2021) Cardiotoxicity of Fluoropyrimidines: Epidemiology, Mechanisms, Diagnosis, and Management. J Clin Med 10(19):4426
Article CAS PubMed PubMed Central Google Scholar
Raber I, Warack S, Kanduri J, Pribish A, Godishala A, Abovich A et al (2020) Fluoropyrimidine-Associated Cardiotoxicity: A Retrospective Case-Control Study. Oncologist 25(3):e606–e609
Article CAS PubMed Google Scholar
de Moraes FCA, de Almeida Barbosa AB, Sano VKT, Kelly FA, Burbano RMR (2024) Pharmacogenetics of DPYD and treatment-related mortality on fluoropyrimidine chemotherapy for cancer patients: a meta-analysis and trial sequential analysis. BMC Cancer 24(1):1210
Article PubMed PubMed Central Google Scholar
Ardizzone A, Bulzomì M, De Luca F, Silvestris N, Esposito E, Capra AP. Dihydropyrimidine Dehydrogenase Polymorphism c.2194G>A Screening Is a Useful Tool for Decreasing Gastrointestinal and Hematological Adverse Drug Reaction Risk in Fluoropyrimidine-Treated Patients. Curr Issues Mol Biol. 2024 Sep;46(9):9831–43.
Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC (1991) Cardiac disturbances during the administration of taxol. J Clin Oncol 9(9):1704–1712
Article CAS PubMed Google Scholar
Osman M, Elkady M (2017) A Prospective Study to Evaluate the Effect of Paclitaxel on Cardiac Ejection Fraction. Breast Care 12(4):255–259
Article PubMed PubMed Central Google Scholar
Dombernowsky P, Gehl J, Boesgaard M, Paaske T, Jensen BV (1996) Doxorubicin and paclitaxel, a highly active combination in the treatment of metastatic breast cancer. Semin Oncol 23(5 Suppl 11):23–27
El-Awady ESE, Moustafa YM, Abo-Elmatty DM, Radwan A (2011) Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol 650(1):335–341
Article CAS PubMed Google Scholar
Iqubal A, Iqubal MK, Sharma S, Ansari MohdA, Najmi AK, Ali SM, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 2019 Feb 1;218:112–31.
Valiyaveettil D, Joseph D, Malik M (2023) Cardiotoxicity in breast cancer treatment: Causes and mitigation. Cancer Treat Res Commun 1(37)
Schlam I, Swain SM (2021) HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now. Npj Breast Cancer 7(1):1–12
Odiete O, Hill MF, Sawyer DB (2012O 26) Neuregulin in Cardiovascular Development and Disease. Circ Res 111(10):1376–1385
Article CAS PubMed PubMed Central Google Scholar
Pentassuglia L, Graf M, Lane H, Kuramochi Y, Cote G, Timolati F et al (2009A 15) Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Exp Cell Res 315(7):1302–1312
Article CAS PubMed PubMed Central Google Scholar
Orphanos GS, Ioannidis GN, Ardavanis AG (2009) Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol 48(7):964–970
Article CAS PubMed Google Scholar
Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7(5):332–344
Comments (0)