Optimized production and characterization of a thermostable cellulase from Streptomyces thermodiastaticus strain

Abu Zaid AS, Yassien MA, Aboshanab KM, Elissawy AM (2021) Streptomyces variabilis Isolate MW091521: a new microbial source of heliomycin. Appl Biochem Microbiol 57:564–570. https://doi.org/10.1134/S0003683821050021

Article  CAS  Google Scholar 

Ahmad T, Sharma A, Gupta G, Mansoor S, Jan S, Kaur B, Paray BA, Ahmad A (2020) Response surface optimization of cellulase production from Aneurinibacillus aneurinilyticus BKT-9: An isolate of urban Himalayan freshwater. Saudi J Biol Sci 27:2333–2343. https://doi.org/10.1016/j.sjbs.2020.04.036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H (2021) Thermostable cellulases / xylanases from thermophilic and hyperthermophilic microorganisms: current perspective. Front Bioeng Biotechnol 9:794304. https://doi.org/10.3389/fbioe.2021.794304

Article  PubMed  PubMed Central  Google Scholar 

Akintola AI, Oyedeji O, Bakare MK, Adewale IO (2017) Purification and characterization of thermostable cellulase from Enterobacter cloacae IP8 isolated from decayed plant leaf litter. Biocatal Biotransform 35:379–387. https://doi.org/10.1080/10242422.2017.1349761

Article  CAS  Google Scholar 

Akram F, ul Haq I, Imran W, Mukhtar H (2018) Insight perspectives of thermostable endoglucanases for bioethanol production: a review. Renew Energy 122:225–238. https://doi.org/10.1016/j.renene.2018.01.095

Article  CAS  Google Scholar 

Álvarez C, Reyes-Sosa FM, Díez B (2016) Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 9:149–156. https://doi.org/10.1111/1751-7915.12346

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arora NK, Mishra J, Mishra V (2020) Microbial enzymes: roles and applications in industries. Springer, Singapore. https://doi.org/10.1007/978-981-15-1710-5

Book  Google Scholar 

Balan V, Jin M, Culbertson A, Uppugundla N (2013) The saccharification step trichoderma reesei cellulase hyper producer strains. In: Faraco V (ed) Lignocellulose conversion. Springer, Berlin and Heidelberg, pp 65–91. https://doi.org/10.1007/978-3-642378614

Chapter  Google Scholar 

Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases– Diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15:197–210. https://doi.org/10.1016/j.jgeb.2016.12.001

Article  CAS  PubMed  Google Scholar 

Budihal SR, Agsar D, Patil SR (2016) Enhanced production and application of acidothermophilic Streptomyces cellulase. Bioresour Technol 200:706–712. https://doi.org/10.1016/j.biortech.2015.10.098

Article  CAS  PubMed  Google Scholar 

Chellapandi P, Jani HM (2008) Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. Braz J Microbiol 39:122–127. https://doi.org/10.1590/S1517-83822008000100026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuecas A, Cruces J, Galisteo-López JF, Peng X, Gonzalez JM (2016) Cellular viscosity in prokaryotes and thermal stability of low molecular weight biomolecules. Biophys J 111:875–882. https://doi.org/10.1016/j.bpj.2016.07.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Da Vinha FNM, Gravina-Oliveira MP, Franco MN, Macrae A, da Silva Bon EP, Nascimento RP, Coelho RRR (2011) Cellulase production by streptomyces viridobrunneus scpe-09 using lignocellulosic biomass as inducer substrate. Appl Biochem Biotechnol 164:256–267. https://doi.org/10.1007/s12010-010-9132-8

Article  CAS  PubMed  Google Scholar 

Dai Y-M, Chen K-T, Chen C-C (2014) Study of the microwave lipid extraction from microalgae for biodiesel production. Chem Eng J 250:267–273. https://doi.org/10.1016/j.cej.2014.04.031

Article  CAS  Google Scholar 

de Cassia PJ, Giese EC, de Souza Moretti MM, dos Santos Gomes AC, Perrone OM, Boscolo M, da Silva R, Gomes E, Martins DAB (2017) Effect of metal ions, chemical agents and organic compounds on lignocellulolytic enzymes activities, in Enzyme Inhibitors and Activators p. INTECH. https://doi.org/10.5772/65934

Article  Google Scholar 

dos Santos JR, de Souza Moreira LR, Filho EXF (2022) Cellulose-degrading enzymes: key players in biorefinery development. Biologia (Bratisl). https://doi.org/10.1007/s11756-022-01274-6.10.1007/s11756-022-01274

Article  Google Scholar 

Ebaid R, Wang H, Sha C, Abomohra AE-F, Shao W (2019) Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: a critical review. J Clean Prod 238:117925. https://doi.org/10.1016/j.jclepro.2019.117925

Article  CAS  Google Scholar 

Elkenawy NM, Yassin AS, Elhifnawy HN, Amin MA (2017) Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnol Rep 14:47–53. https://doi.org/10.1016/j.btre.2017.04.001

Article  Google Scholar 

El-Sayed SE, Abdelaziz NA, El-Housseiny GS, Aboshanab KM (2020) Octadecyl 3-(3, 5-di-tert-butyl-4-hydroxyphenyl) propanoate, an antifungal metabolite of Alcaligenes faecalis strain MT332429 optimized through response surface methodology. Appl Microbiol Biotechnol 104:10755–10768. https://doi.org/10.1007/s00253-020-10962-9

Article  CAS  PubMed  Google Scholar 

Fatokun E, Nwodo U, Okoh A (2016) Classical optimization of cellulase and xylanase production by a marine streptomyces species. Appl Sci 6:286. https://doi.org/10.3390/app6100286

Article  CAS  Google Scholar 

Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:1–12. https://doi.org/10.1186/s12896-015-0129-9

Article  CAS  Google Scholar 

Ghosh S, Lepcha K, Basak A, Mahanty AK (2020) Thermophiles and thermophilic hydrolases. Physiological and biotechnological aspects of extremophiles. Elsevier, Armsterdam, pp 219–236. https://doi.org/10.1016/B978-0-12-818322-9.00016-2

Chapter  Google Scholar 

Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Chaabouni-Ellouze S (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. Biomed Res Int. https://doi.org/10.1155/2012/373682

Article  Google Scholar 

Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X (2019) Improvements of thermophilic enzymes: from genetic modifications to applications. Bioresour Technol 279:350–361. https://doi.org/10.1016/j.biortech.2019.01.087

Article  CAS  PubMed  Google Scholar 

Hasan MM, Marzan LW, Hosna A, Hakim A, Azad AK (2017) Optimization of some fermentation conditions for the production of extracellular amylases by using Chryseobacterium and Bacillus isolates from organic kitchen wastes. J Genet Eng Biotechnol 15:59–68. https://doi.org/10.1016/j.jgeb.2017.02.009

Article  PubMed  PubMed Central  Google Scholar 

Iftikhar T, Niaz M, Hussain Y, Abbas SQ, Ashraf I, Zia MA (2010) Improvement of selected strains through gamma irradiation for enhanced lipolytic potential. Pak J Bot 42:2257–2267. https://doi.org/10.1127/0029-5035/2010/0091-0265

Article  Google Scholar 

LP Information, Inc. (2021) Global cellulase (CAS 9012–54–8) Market Growth 2021–2026. SKU: LPI16718728., Market Research. https://www.marketresearch.com/LP-Information-Inc-v4134/Global-Cellulase-CAS-Growth-14812160/. Accessed 28 August 2021

Iqbal HMN, Ishtiaq A, Muhammad Anjum Z, Muhammad I (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol. https://doi.org/10.4236/abb.2011.23024

Article  Google Scholar 

Islam F, Roy N (2018) Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11:445. https://doi.org/10.1186/s13104018-3558-4

Article  PubMed  PubMed Central  Google Scholar 

Jang H-D, Chang K-S (2005) Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-l fermenter. Biotechnol Lett 27:239–242. https://doi.org/10.1007/s10529-004-8356-5

Article  CAS  PubMed  Google Scholar 

Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10:5029. https://doi.org/10.1038/s41467-019-13036-1

Article  CAS  PubMed 

Comments (0)

No login
gif