Oxidised phosphatidylcholine induces sarcolemmal ceramide accumulation and insulin resistance in skeletal muscle

Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871. https://doi.org/10.1016/j.cell.2012.02.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Summers SA, Chaurasia B, Holland WL (2019) Metabolic messengers: ceramides. Nat Metab 1(11):1051–1058. https://doi.org/10.1038/s42255-019-0134-8

Article  PubMed  PubMed Central  Google Scholar 

Perreault L, Newsom SA, Strauss A et al (2018) Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight 3(3):e96805. https://doi.org/10.1172/jci.insight.96805

Article  PubMed  PubMed Central  Google Scholar 

Chung JO, Koutsari C, Blachnio-Zabielska AU, Hames KC, Jensen MD (2017) Intramyocellular ceramides: subcellular concentrations and fractional de novo synthesis in postabsorptive humans. Diabetes 66(8):2082–2091. https://doi.org/10.2337/db17-0082

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adada M, Luberto C, Canals D (2016) Inhibitors of the sphingomyelin cycle: sphingomyelin synthases and sphingomyelinases. Chem Phys Lipids 197:45–59. https://doi.org/10.1016/j.chemphyslip.2015.07.008

Article  CAS  PubMed  Google Scholar 

Bigagli E, Lodovici M (2019) Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxid Med Cell Longev 2019:5953685. https://doi.org/10.1155/2019/5953685

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bigagli E, Raimondi L, Mannucci E et al (2012) Lipid and protein oxidation products, antioxidant status and vascular complications in poorly controlled type 2 diabetes. Br J Diabetes Vasc Dis 12(1):33–39. https://doi.org/10.1177/1474651411435588

Article  CAS  Google Scholar 

Strom A, Kaul K, Brüggemann J et al (2017) Lower serum extracellular superoxide dismutase levels are associated with polyneuropathy in recent-onset diabetes. Exp Mol Med 49(11):e394. https://doi.org/10.1038/emm.2017.173

Article  CAS  PubMed  PubMed Central  Google Scholar 

Njajou OT, Kanaya AM, Holvoet P et al (2009) Association between oxidized LDL, obesity and type 2 diabetes in a population-based cohort, the Health, Aging and Body Composition Study. Diabetes Metab Res Rev 25(8):733–739. https://doi.org/10.1002/dmrr.1011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelly AS, Jacobs DR Jr, Sinaiko AR, Moran A, Steffen LM, Steinberger J (2010) Relation of circulating oxidized LDL to obesity and insulin resistance in children. Pediatr Diabetes 11(8):552–555. https://doi.org/10.1111/j.1399-5448.2009.00640.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rösen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17(3):189–212. https://doi.org/10.1002/dmrr.196

Article  PubMed  Google Scholar 

Couillard C, Ruel G, Archer WR et al (2005) Circulating levels of oxidative stress markers and endothelial adhesion molecules in men with abdominal obesity. J Clin Endocrinol Metab 90(12):6454–6459. https://doi.org/10.1210/jc.2004-2438

Article  CAS  PubMed  Google Scholar 

Weinbrenner T, Schröder H, Escurriol V et al (2006) Circulating oxidized LDL is associated with increased waist circumference independent of body mass index in men and women. Am J Clin Nutr 83(1):30–35. https://doi.org/10.1093/ajcn/83.1.30

Article  CAS  PubMed  Google Scholar 

Marin MT, Dasari PS, Tryggestad JB, Aston CE, Teague AM, Short KR (2015) Oxidized HDL and LDL in adolescents with type 2 diabetes compared to normal weight and obese peers. J Diabetes Complications 29(5):679–685. https://doi.org/10.1016/j.jdiacomp.2015.03.015

Article  PubMed  PubMed Central  Google Scholar 

Loidl A, Sevcsik E, Riesenhuber G, Deigner HP, Hermetter A (2003) Oxidized phospholipids in minimally modified low density lipoprotein induce apoptotic signaling via activation of acid sphingomyelinase in arterial smooth muscle cells. J Biol Chem 278(35):32921–32928. https://doi.org/10.1074/jbc.M306088200

Article  CAS  PubMed  Google Scholar 

Walton KA, Gugiu BG, Thomas M et al (2006) A role for neutral sphingomyelinase activation in the inhibition of LPS action by phospholipid oxidation products. J Lipid Res 47(9):1967–1974. https://doi.org/10.1194/jlr.M600060-JLR200

Article  CAS  PubMed  Google Scholar 

Qin J, Testai FD, Dawson S, Kilkus J, Dawson G (2009) Oxidized phosphatidylcholine formation and action in oligodendrocytes. J Neurochem 110(5):1388–1399. https://doi.org/10.1111/j.1471-4159.2009.06231.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramprecht C, Jaritz H, Streith I et al (2015) Toxicity of oxidized phosphatidylcholines in cultured human melanoma cells. Chem Phys Lipids 189:39–47. https://doi.org/10.1016/j.chemphyslip.2015.05.007

Article  CAS  PubMed  Google Scholar 

Stemmer U, Dunai ZA, Koller D et al (2012) Toxicity of oxidized phospholipids in cultured macrophages. Lipids Health Dis 11:110. https://doi.org/10.1186/1476-511x-11-110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serbulea V, Upchurch CM, Ahern KW et al (2018) Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol Metab 7:23–34. https://doi.org/10.1016/j.molmet.2017.11.002

Article  CAS  PubMed  Google Scholar 

Vogl F, Humpolícková J, Amaro M et al (2016) Role of protein kinase C δ in apoptotic signaling of oxidized phospholipids in RAW 264.7 macrophages. Biochim Biophys Acta 1861(4):320–330. https://doi.org/10.1016/j.bbalip.2015.12.009

Article  CAS  PubMed  Google Scholar 

Fruhwirth GO, Moumtzi A, Loidl A, Ingolic E, Hermetter A (2006) The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta 1761(9):1060–1069. https://doi.org/10.1016/j.bbalip.2006.06.001

Article  CAS  PubMed  Google Scholar 

Halasiddappa LM, Koefeler H, Futerman AH, Hermetter A (2013) Oxidized phospholipids induce ceramide accumulation in RAW 264.7 macrophages: role of ceramide synthases. PLoS One 8(7):e70002. https://doi.org/10.1371/journal.pone.0070002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serbulea V, Upchurch CM, Schappe MS et al (2018) Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proc Natl Acad Sci USA 115(27):E6254–E6263. https://doi.org/10.1073/pnas.1800544115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146. https://doi.org/10.1194/jlr.D700041-JLR200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinha S, Perdomo G, Brown NF, O’Doherty RM (2004) Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor κB. J Biol Chem 279(40):41294–41301. https://doi.org/10.1074/jbc.M406514200

Article  CAS  PubMed 

Comments (0)

No login
gif