Differentiation Protocol-Dependent Variability in hiPSC-Derived Endothelial Progenitor Functionality

Jalilian E, Raimes W, Macias RM. Transcriptional profiling reveals fundamental differences in iPS-derived CD34+ cells versus adult circulating CD34+. J Biol Med. 2024;8:001–13. https://doi.org/10.17352/jbm.000041.

Article  Google Scholar 

Liu X, et al. Differentiation of functional endothelial cells from human induced pluripotent stem cells: a novel, highly efficient and cost effective method. Differentiation. 2016;92:225–236. https://doi.org/10.1016/j.diff.2016.05.004.

Article  PubMed  Google Scholar 

Li, Y., Terstappen, G. C. & Zhang, W. In: Nagy A, Turksen K, editors, Induced pluripotent stem (iPS) cells: methods and protocols. Springer US; 2022. p. 521–530.

Orlova VV, et al. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol. 2014;34:177–86. https://doi.org/10.1161/ATVBAHA.113.302598.

Article  PubMed  Google Scholar 

Zhang F, et al. Efficient endothelial and smooth muscle cell differentiation from human pluripotent stem cells through a simplified insulin-free culture system. Biomaterials. 2021;271:120713. https://doi.org/10.1016/j.biomaterials.2021.120713.

Article  PubMed  Google Scholar 

Nishihara H, et al. Differentiation of human pluripotent stem cells to brain microvascular endothelial cell-like cells suitable to study immune cell interactions. STAR Protocols. 2021;2:100563. https://doi.org/10.1016/j.xpro.2021.100563.

Article  PubMed  PubMed Central  Google Scholar 

Aoki H, et al. Efficient differentiation and purification of human induced pluripotent stem cell-derived endothelial progenitor cells and expansion with the use of inhibitors of ROCK, TGF-β, and GSK3β. Heliyon. 2020;6:e03493. https://doi.org/10.1016/j.heliyon.2020.e03493.

Article  PubMed  PubMed Central  Google Scholar 

Patsch C, et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology. 2015;17:994–1003. https://doi.org/10.1038/ncb3205.

Article  PubMed  PubMed Central  Google Scholar 

Olmer R, et al. Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Rep. 2018;10:1657–72. https://doi.org/10.1016/j.stemcr.2018.03.017.

Article  Google Scholar 

Jahan B, McCloskey KE. Differentiation and expansion of endothelial cells requires pre-optimization of KDR+ expression kinetics. Stem Cell Res. 2020;42:101685. https://doi.org/10.1016/j.scr.2019.101685.

Article  PubMed  Google Scholar 

Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160. https://doi.org/10.1038/srep04160.

Article  PubMed  PubMed Central  Google Scholar 

Lian X, et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Rep. 2014;3:804–16. https://doi.org/10.1016/j.stemcr.2014.09.005.

Article  Google Scholar 

Nguyen J, Lin Y-Y, Gerecht S. The next generation of endothelial differentiation: tissue-specific ECs. Cell Stem Cell. 2021;28:1188–204. https://doi.org/10.1016/j.stem.2021.05.002.

Article  PubMed  Google Scholar 

Orlova VV, et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc. 2014;9:1514–31. https://doi.org/10.1038/nprot.2014.102.

Article  PubMed  Google Scholar 

Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2002;99:4391–6. https://doi.org/10.1073/pnas.032074999.

Article  PubMed  PubMed Central  Google Scholar 

Elcheva I, et al. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nature Communications. 2014;5:4372. https://doi.org/10.1038/ncomms5372.

Article  PubMed  Google Scholar 

Wang K, et al. Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Sci Adv. 2020;6:eaba7606. https://doi.org/10.1126/sciadv.aba7606.

Article  PubMed  PubMed Central  Google Scholar 

Prasain N, et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat Biotechnol. 2014;32:1151–7. https://doi.org/10.1038/nbt.3048.

Article  PubMed  PubMed Central  Google Scholar 

Kusuma S, et al. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A. 2013;110:12601–6. https://doi.org/10.1073/pnas.1306562110.

Article  PubMed  PubMed Central  Google Scholar 

Crosby CO, et al. Phototunable interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors. Acta Biomater. 2021;122:133–44. https://doi.org/10.1016/j.actbio.2020.12.041.

Article  PubMed  Google Scholar 

Crosby CO, et al. Quantifying the vasculogenic potential of induced pluripotent stem cell-derived endothelial progenitors in collagen hydrogels. Tissue Eng Part A. 2019;25:746–58. https://doi.org/10.1089/ten.TEA.2018.0274.

Article  PubMed  PubMed Central  Google Scholar 

Crosby CO, Zoldan J. An in vitro 3D model and computational pipeline to quantify the vasculogenic potential of iPSC-derived endothelial progenitors. J Vis Exp. 2019. https://doi.org/10.3791/59342

Lister R, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73. https://doi.org/10.1038/nature09798.

Article  PubMed  PubMed Central  Google Scholar 

Aisenbrey EA, et al. A protocol for rapid pericyte differentiation of human induced pluripotent stem cells. STAR Protoc. 2021;2:100261. https://doi.org/10.1016/j.xpro.2020.100261.

Article  PubMed  PubMed Central  Google Scholar 

Duan F, et al. Biphasic modulation of insulin signaling enables highly efficient hematopoietic differentiation from human pluripotent stem cells. Stem Cell Res Ther. 2018;9:1–16.

Article  Google Scholar 

Ullah I, et al. VEGF – supplemented extracellular matrix is sufficient to induce endothelial differentiation of human iPSC. Biomaterials. 2019;216:119283. https://doi.org/10.1016/j.biomaterials.2019.119283.

Article  PubMed  Google Scholar 

Lin Y, Gil C-H, Yoder MC. Differentiation, evaluation, and application of human induced pluripotent stem cell–derived endothelial cells. Arterioscler Thromb Vasc Biol. 2017;37:2014–25.

Article  PubMed  Google Scholar 

Yoder MC. Differentiation of pluripotent stem cells into endothelial cells. Curr Opin Hematol. 2015;22:252.

Article  PubMed  PubMed Central  Google Scholar 

Gheibi S, Singh T, da Cunha JPM, Fex M, Mulder H. Insulin/glucose-responsive cells derived from induced pluripotent stem cells: disease modeling and treatment of diabetes. Cells. 2020;9:2465.

Article  PubMed  PubMed Central  Google Scholar 

Porkolab G, et al. A small molecule cocktail for robust induction of blood-brain barrier properties. bioRxiv. 2023; 2023.2002. 2009.527899 .

Stern B, Monteleone P, Zoldan J. SARS-CoV-2 spike protein induces endothelial dysfunction in 3D engineered vascular networks. J Biomed Mater Res Part A n/a. https://doi.org/10.1002/jbm.a.37543

Patel J, et al. Functional definition of progenitors versus mature endothelial cells reveals key SoxF-dependent differentiation process. Circulation. 2017;135:786–805. https://doi.org/10.1161/CIRCULATIONAHA.116.024754.

Article  PubMed  Google Scholar 

Lohman BK, Weber JN, Bolnick DI. Evaluation of TagSeq, a reliable low-cost alternative for RNAseq. Mol Ecol Resour. 2016;16:1315–21. https://doi.org/10.1111/1755-0998.12529.

Article  PubMed  Google Scholar 

Alvandi Z, Bischoff J. Endothelial-mesenchymal transition in cardiovascular disease. Arterioscler Thrombosis Vasc Biol. 2021;41:2357–69. https://doi.org/10.1161/ATVBAHA.121.313788.

Article  Google Scholar 

Baardman ME, et al. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech. 2016;9:413–25. https://doi.org/10.1242/dmm.022053.

Article  PubMed 

Comments (0)

No login
gif