Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11:177–80.
PubMed PubMed Central Google Scholar
Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. Journal of Diabetes and Metabolic Disorders. 2017;16:21. https://doi.org/10.1186/s40200-017-0302-x.
Article PubMed PubMed Central Google Scholar
Economic, U.N.D.o.; Division, S.A.P. World Population Ageing: 2017 Highlights; UN: 2017.
Goates S, Du K, Arensberg MB, Gaillard T, Guralnik J, Pereira SL. Economic impact of hospitalizations in US adults with sarcopenia. J Frailty Aging. 2019;8:93–9. https://doi.org/10.14283/jfa.2019.10.
Article CAS PubMed Google Scholar
Cruz-Jentoft AJ, Sayer AA. Sarcopenia Lancet. 2019;393:2636–46. https://doi.org/10.1016/s0140-6736(19)31138-9.
Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95:1717–27. https://doi.org/10.1152/japplphysiol.00347.2003.
Article CAS PubMed Google Scholar
Noce A, Marrone G, Ottaviani E, Guerriero C, Di Daniele F, Pietroboni Zaitseva A, Di Daniele N. Uremic sarcopenia and its possible nutritional approach. Nutrients. 2021;13:147.
Article PubMed PubMed Central Google Scholar
Tieland M, Dirks ML, van der Zwaluw N, Verdijk LB, van de Rest O, de Groot LCPGM, van Loon LJC. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. Journal of the American Medical Directors Association. 2012;13:713–9. https://doi.org/10.1016/j.jamda.2012.05.020.
Xu Z-R, Tan Z-J, Zhang Q, Gui Q-F, Yang Y-M. Clinical effectiveness of protein and amino acid supplementation on building muscle mass in elderly people: a meta-analysis. PLoS ONE. 2014;9:e109141. https://doi.org/10.1371/journal.pone.0109141.
Article CAS PubMed PubMed Central Google Scholar
Verhoeven S, Vanschoonbeek K, Verdijk LB, Koopman R, Wodzig WK, Dendale P, van Loon LJ. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89:1468–75. https://doi.org/10.3945/ajcn.2008.26668.
Article CAS PubMed Google Scholar
Baldwin C, Spiro A, Ahern R, Emery PW. Oral Nutritional interventions in malnourished patients with cancer: a systematic review and meta-analysis. JNCI: Journal of the National Cancer Institute. 2012;104:371–85. https://doi.org/10.1093/jnci/djr556.
Moughan PJ. Dietary protein quality in humans—an overview. J AOAC Int. 2019;88:874–6. https://doi.org/10.1093/jaoac/88.3.874.
Réhault-Godbert S, Guyot N, Nys Y. The golden egg: nutritional value, bioactivities, and emerging benefits for human health. Nutrients. 2019;11:684. https://doi.org/10.3390/nu11030684.
Article CAS PubMed PubMed Central Google Scholar
Idahor KO. Poultry birds’ egg: an egg inside egg whose biological, nutritional and cultural value gives and sustains life. International Journal of Research Studies in Zoology. 2017;3:1–11. https://doi.org/10.20431/2454-941X.0304001.
Duan X, Li M, Wu F, Yang N, Nikoo M, Jin Z, Xu X. Postfertilization changes in nutritional composition and protein conformation of hen egg. J Agric Food Chem. 2013;61:12092–100. https://doi.org/10.1021/jf403099q.
Article CAS PubMed Google Scholar
Kocamis H, Kirkpatrick-Keller DC, Richter J, Killefer J. The ontogeny of myostatin, follistatin and activin-B mRNA expression during chicken embryonic development. Growth Dev Aging. 1999;63:143–50.
Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K. Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol. 2004;270:19–30. https://doi.org/10.1016/j.ydbio.2004.01.046.
Article CAS PubMed Google Scholar
White DA, Harkin KR, Roush JK, Renberg WC, Biller D. Fortetropin inhibits disuse muscle atrophy in dogs after tibial plateau leveling osteotomy. PLoS ONE. 2020;15:1–10. https://doi.org/10.1371/journal.pone.0231306.
Sharp MH, Lowery RP, Mobley CB, Fox CD, de Souza EO, Shields KA, Healy JC, Arick NQ, Thompson RM, Roberts MD, et al. The effects of fortetropin supplementation on body composition, strength, and power in humans and mechanism of action in a rodent model. J Am Coll Nutr. 2016;35:679–91. https://doi.org/10.1080/07315724.2016.1142403.
Article CAS PubMed Google Scholar
Joglekar D, Warren R, Browe D, Ekwueme E, Dariani M, Padliya ND, Freeman JW. Investigating the Effects of fertilized egg yolk extract on myoblast proliferation and differentiation. Regenerative Engineering and Translational Medicine. 2020;6:125–37. https://doi.org/10.1007/s40883-019-00137-y.
Blau HM, Pavlath GK, Hardeman EC, Choy-Pik C, Silberstein L, Webster SG, Miller SC, Webster C. Plasticity of the differentiated state. Science (American Association for the Advancement of Science). 1985;230:758–66. https://doi.org/10.1126/science.2414846.
Miranda Alarcón YS, Jazwinska D, Lymon T, Khalili A, Browe D, Newton B, Pellegrini M, Cohen RI, Shreiber DI, Freeman JW. The use of collagen methacrylate in actuating polyethylene glycol diacrylate-acrylic acid scaffolds for muscle regeneration. Ann Biomed Eng. 2023. https://doi.org/10.1007/s10439-023-03139-8.
Stadelman WJ, Newkirk D, Newby L. Egg science and technology. 4th ed. CRC Press; 2017. https://doi.org/10.1201/9780203758878.
Laca A, Paredes B, Díaz M. A method of egg yolk fractionation. Characterization of fractions. Food Hydrocolloids - FOOD HYDROCOLLOID. 2010;24:434–43. https://doi.org/10.1016/j.foodhyd.2009.11.010.
Xiao N, Zhao Y, Yao Y, Wu N, Xu M, Du H, Tu Y. Biological activities of egg yolk lipids: a review. J Agric Food Chem. 2020;68:1948–57.
Article CAS PubMed Google Scholar
Abeyrathne E, Nam KC, Huang X, Ahn DU. Egg yolk lipids: separation, characterization, and utilization. Food Sci Biotechnol. 2022;31:1243–56. https://doi.org/10.1007/s10068-022-01138-4.
Article CAS PubMed PubMed Central Google Scholar
Engert JC, Berglund EB, Rosenthal N. Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol. 1996;135:431–40. https://doi.org/10.1083/jcb.135.2.431.
Article CAS PubMed Google Scholar
Harridge SDR. Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol. 2007;92:783–97. https://doi.org/10.1113/expphysiol.2006.036525.
Article CAS PubMed Google Scholar
Sun L, Trausch-Azar JS, Muglia LJ, Schwartz AL. Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism. Proc Natl Acad Sci. 2008;105:3339–44. https://doi.org/10.1073/pnas.0800165105.
Article PubMed PubMed Central Google Scholar
te Pas MFW, de Jong PR, Verburg FJ. Glucocorticoid inhibition of C2C12 proliferation rate and differentiation capacity in relation to mRNA levels of the MRF gene family. Mol Biol Rep. 2000;27:87–98. https://doi.org/10.1023/A:1007120921064.
Murphy D, Nicholson T, Jones S, O’Leary M. MyoCount: a software tool for the automated quantification of myotube surface area and nuclear fusion index [version 1; peer review: 2 approved]. Wellcome Open Research. 2019;4. https://doi.org/10.12688/wellcomeopenres.15055.1.
Mullen M, Williams K, LaRocca T, Duke V, Hambright WS, Ravuri SK, Bahney CS, Ehrhart N, Huard J (2022) Mechanical strain drives exosome production, function, and miRNA cargo in C2C12 muscle progenitor cells. Journal of Orthopaedic Research® 41:1186–1197. https://doi.org/10.1002/jor.25467.
Canciani A, Capitanio C, Stanga S, Faravelli S, Scietti L, Mapelli L, Soda T, D’Angelo E, Kienlen-Campard P, Forneris F. Deconstruction of neurotrypsin reveals a multi-factorially regulated activity affecting myotube formation and neuronal excitability. Mol Neurobiol. 2022;59:7466–85. https://doi.org/10.1007/s12035-022-03056-2.
Comments (0)