Bioprintable Janus Base Nano-Matrix for Improved Cartilage Tissue Engineering

Moroni L, et al. Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol. 2018;36(4):384–402. https://doi.org/10.1016/j.tibtech.2017.10.015.

Article  CAS  PubMed  Google Scholar 

Nosoudi, N., et al., (2020) Electrospinning Live Cells Using Gelatin and Pullulan. Bioengineering (Basel). 7(1).https://doi.org/10.3390/bioengineering7010021.

Faber, L., A. Yau, and Y. Chen, (2023) Translational biomaterials of four-dimensional bioprinting for tissue regeneration. Biofabrication, 16(1).https://doi.org/10.1088/1758-5090/acfdd0.

Previn Ramiah, L.C.d.T., Yahya E. Choonara, Pierre P.D. Kondiah, Viness Pillay, (2020) Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration. Front. Mater, 7. https://doi.org/10.3389/fmats.2020.00076.

Li J, et al. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14:271. https://doi.org/10.1186/s12967-016-1028-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gungor-Ozkerim PS, et al. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915–46. https://doi.org/10.1039/c7bm00765e.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Irvine SA, et al. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices. 2015;17(1):16. https://doi.org/10.1007/s10544-014-9915-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bishop ES, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis. 2017;4(4):185–95. https://doi.org/10.1016/j.gendis.2017.10.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markstedt K, et al. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromol. 2015;16(5):1489–96. https://doi.org/10.1021/acs.biomac.5b00188.

Article  CAS  Google Scholar 

Unagolla, J.M. and A.C. Jayasuriya, (2020) Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today, 18.https://doi.org/10.1016/j.apmt.2019.100479.

Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5(7):539–51. https://doi.org/10.1038/s41578-020-0199-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roseti L, Grigolo B. Current concepts and perspectives for articular cartilage regeneration. J Exp Orthop. 2022;9(1):61. https://doi.org/10.1186/s40634-022-00498-4.

Article  PubMed  PubMed Central  Google Scholar 

Jayasuriya CT, et al. The influence of tissue microenvironment on stem cell-based cartilage repair. Ann N Y Acad Sci. 2016;1383(1):21–33. https://doi.org/10.1111/nyas.13170.

Article  PubMed  PubMed Central  Google Scholar 

Landolina, M., A. Yau, and Y. Chen, (2022) Fabrication and Characterization of Layer-by-Layer Janus Base Nano-Matrix to Promote Cartilage Regeneration. J Vis Exp, (185).https://doi.org/10.3791/63984.

Zhou L, et al. Self-assembled biomimetic Nano-Matrix for stem cell anchorage. J Biomed Mater Res A. 2020;108(4):984–91. https://doi.org/10.1002/jbm.a.36875.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, L., et al., (2020) Fabrication of a Biomimetic Nano-Matrix with Janus Base Nanotubes and Fibronectin for Stem Cell Adhesion. J Vis Exp, (159). https://doi.org/10.3791/61317.

Zhou L, et al. Controlled Self-Assembly of DNA-Mimicking Nanotubes to Form a Layer-by-Layer Scaffold for Homeostatic Tissue Constructs. ACS Appl Mater Interfaces. 2021;13(43):51321–32. https://doi.org/10.1021/acsami.1c13345.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, et al. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering. Tissue Eng Part C Methods. 2010;16(6):1233–43. https://doi.org/10.1089/ten.TEC.2009.0400.

Article  CAS  PubMed  Google Scholar 

Griger, S., I. Sands, and Y. Chen, (2022) Comparison between Janus-Base Nanotubes and Carbon Nanotubes: A Review on Synthesis, Physicochemical Properties, and Applications. Int J Mol Sci, 23(5). https://doi.org/10.3390/ijms23052640.

Zhang L, et al. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int J Nanomedicine. 2008;3(3):323–33. https://doi.org/10.2147/ijn.s2709.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, W. and Y. Chen, Molecular Engineering of DNA-inspired Janus base nanomaterials. Juniper Online J Mater Sci, 2019. 5(4).

Chen, Y., Nanomaterial and methods of use thereof, USPTO, Editor. 2021: United States of America.

Chen, Y.Z., W.; Lee, J., Nanomaterial and methods of use thereof, USPTO, Editor. 2023: United States of America.

Chen, Q.Y., H.; Chen, Y, Nanomaterial compositions, synthesis, and assembly, USPTO, Editor. 2023: United States of America.

Chen, Y.Z., W.; Lee, J., Nanomaterial delivery vehicle and method of use thereof, USPTO, Editor. 2023: United States of America.

Webster, T.J.C., Q.; Chen, Y.; Fenniri, H.; Hemraz, U. D., Nanotubes as carriers of nucleic acids into cells, USPTO, Editor. 2012: United States of America.

Chen, Y.C., Q.; Webster, T. J.; Fenniri, H.; Hemraz, U. D., Nanotubes as carriers of nucleic acids into cells, USPTO, Editor. 2015: United States of America.

Zhang W, Chen Y. Self-assembled Janus base nanotubes: chemistry and applications. Front Chem. 2023;11:1346014. https://doi.org/10.3389/fchem.2023.1346014.

Article  CAS  PubMed  Google Scholar 

Chen Y, et al. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone. Int J Nanomedicine. 2011;6:1035–44. https://doi.org/10.2147/IJN.S18755.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song S, et al. Self-assembled rosette nanotubes for incorporating hydrophobic drugs in physiological environments. Int J Nanomedicine. 2011;6:101–7. https://doi.org/10.2147/IJN.S11957.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, J., et al., (2021) DNA-inspired nanomaterials for enhanced endosomal escape. Proc Natl Acad Sci U S A, 118(19).https://doi.org/10.1073/pnas.2104511118.

Stojkov, G., et al., (2021) Relationship between Structure and Rheology of Hydrogels for Various Applications. Gels, 7(4).https://doi.org/10.3390/gels7040255.

Murcinkova, Z., P. Postawa, and J. Winczek, (2022) Parameters Influence on the Dynamic Properties of Polymer-Matrix Composites Reinforced by Fibres, Particles, and Hybrids. Polymers (Basel), 14(15).https://doi.org/10.3390/polym14153060.

Jang JY, et al. Combined effects of surface morphology and mechanical straining magnitudes on the differentiation of mesenchymal stem cells without using biochemical reagents. J Biomed Biotechnol. 2011;2011:860652. https://doi.org/10.1155/2011/860652.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen D, et al. Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Sci Rep. 2017;7(1):658. https://doi.org/10.1038/s41598-017-00690-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu W, et al. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology. 2018;29(18):185101. https://doi.org/10.1088/1361-6528/aaafa1.

Article  CAS  PubMed  Google Scholar 

Jo A, et al. The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis. 2014;1(2):149–61. https://doi.org/10.1016/j.gendis.2014.09.004.

Article  PubMed  PubMed Central  Google Scholar 

Rigueur D, Lyons KM. Whole-mount skeletal staining. Methods Mol Biol. 2014;1130:113–21. https://doi.org/10.1007/978-1-62703-989-5_9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dexheimer V, et al. Differential expression of TGF-beta superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation. Sci Rep. 2016;6:36655. https://doi.org/10.1038/srep36655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun M, et al. Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioact Mater. 2020;5(4):924–37. https://doi.org/10.1016/j.bioactmat.2020.06.016.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif