Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163(4):268–85.
Suamte L, Tirkey A, Barman J, Babu PJ. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater Manuf. 2023;1:100011.
Keshvardoostchokami M, Majidi SS, Huo P, et al. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials. 2021;11(1):21.
Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.
CAS PubMed PubMed Central Google Scholar
Kanapathy M, Hachach-Haram N, Bystrzonowski N, et al. Epidermal grafting versus split-thickness skin grafting for wound healing (EPIGRAAFT): study protocol for a randomized controlled trial. Trials. 2016;17(1):245.
PubMed PubMed Central Google Scholar
Anjum S, Rahman F, Pandey P, et al. Electrospun biomimetic nanofibrous scaffolds: a promising prospect for bone tissue engineering and regenerative medicine. Int J Mol Sci. 2022;23(16):9206.
CAS PubMed PubMed Central Google Scholar
Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology. 2016;68(3):355–69.
Oliveira C, Sousa D, Teixeira JA, et al. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol. 2023;11:1136077.
PubMed PubMed Central Google Scholar
Brown AC, Barker TH. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater. 2014;10(4):1502–14.
Al-Abduljabbar A, Farooq I. Electrospun polymer nanofibers: processing, properties, and applications. Polymers (Basel). 2023;15(1):65.
Hernandez JL, Woodrow KA. Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility. Adv Healthc Mater. 2022;11(9):e2102087.
PubMed PubMed Central Google Scholar
Akombaetwa N, Bwanga A, Makoni PA, Witika BA. Applications of electrospun drug-eluting nanofibers in wound healing: current and future perspectives. Polymers (Basel). 2022;14(14):2931.
Dutta V, Verma R, Gopalkrishnan C, et al. Bio-inspired synthesis of carbon-based nanomaterials and their potential environmental applications: a state-of-the-art review. Inorganics. 2022;10(10):169.
Wang Z, Hu T, Liang R, Wei M. Application of zero-dimensional nanomaterials in biosensing. Front Chem. 2020;8:320.
CAS PubMed PubMed Central Google Scholar
Liu Q, Luo S, Peng J, Chang R. Electrospun nanofibers from plant natural products: a new approach toward efficient wound healing. Int J Nanomedicine. 2024;19:13973–90.
PubMed PubMed Central Google Scholar
Negar Karimi H, Zahra J, Ramin R, Amir NA, Roghayeh S, Abolfazl A. The recent development of carbon-based nanoparticles as a novel approach to skin tissue care and management - A review. Exp Cell Res. 2023;433:113821.
Shahverdi S, Barzegari AA, Bakhshayesh RV, Nami Y. In-vitro and in-vivo antibacterial activity of potential probiotic Lactobacillus paracasei against Staphylococcus aureus and Escherichia coli. Heliyon. 2023;9:e14641.
CAS PubMed PubMed Central Google Scholar
Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA) Bioenergetics. 2007;1767(9):1073–101.
Miller LM, Bourassa MW, Smith RJ. FTIR spectroscopic imaging of protein aggregation in living cells. Biochim Biophys Acta. 2013;1828(10):2339–46.
CAS PubMed PubMed Central Google Scholar
Song X, Chu T, Shi W, et al. Expression, characterization, and application of human-like recombinant gelatin. Bioresour Bioprocess. 2024;11:69.
PubMed PubMed Central Google Scholar
Kędzierska M, Blilid S, Miłowska K, Kołodziejczyk-Czepas J, Katir N, Lahcini M, El Kadib A, Bryszewska M. Insight into factors influencing wound healing using phosphorylated cellulose-filled-chitosan nanocomposite Films. Int J Mol Sci. 2021;22:11386.
PubMed PubMed Central Google Scholar
Tyavambiza C, Meyer M, Meyer S. Cellular and molecular events of wound healing and the potential of silver based nanoformulations as wound healing agents. Bioeng. 2022;9:712.
Kumar S, Wang Y, Hedayati M, et al. Structural control of fibrin bioactivity by mechanical deformation. Proc Natl Acad Sci U S A. 2022;119(22):e2117675119.
CAS PubMed PubMed Central Google Scholar
Kulkarni D, Sherkar R, Shirsathe C, et al. Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Front Bioeng Biotechnol. 2023;11:1159193.
PubMed PubMed Central Google Scholar
Teixeira MA, Amorim MTP, Felgueiras HP. Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers (Basel). 2019;12(1):7.
Yang W, Qi G, Kenny JM, et al. Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant, and water vapor barrier properties of glutaraldehyde crosslinked PVA films. Polymers (Basel). 2020;12(6):1364.
CAS PubMed PubMed Central Google Scholar
Chandrasekaran M, Kim KD, Chun SC. Antibacterial activity of chitosan nanoparticles: a review. Processes. 2020;8(9):1173.
Shahin H, Aldo R. Boccaccini, Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020;107:25–49.
Díez-Pascual AM. Antibacterial action of nanoparticle-loaded nanocomposites based on graphene and its derivatives: a mini-review. Int J Mol Sci. 2020;21(10):3563.
PubMed PubMed Central Google Scholar
Ali AM, Elshabrawy SM, Kamoun EA. Evaluation of the mechanical properties and degradation behavior of chitosan-PVA-graphene oxide nanocomposite scaffolds in vitro. J Taibah Univ Med Sci. 2024;19(3):585–97.
PubMed PubMed Central Google Scholar
Bhattacharya K, Mukherjee SP, Gallud A, et al. Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine. 2016;12(2):333–51.
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502.
CAS PubMed PubMed Central Google Scholar
Phimphilai M, Zhao Z, Boules H, et al. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res. 2006;21(4):637–46.
Sagar S, Ramani P, Jayaseelan VP, et al. Genetic association of vitamin D receptor (rs731236) gene polymorphism with susceptibility to oral cancer in the South Indian population: a case-control study. Front Health Inform. 2024;13(3):10560–9.
Sagar S, Ramani P, Moses S, et al. Correlation of salivary cytokine IL-17A and 1,25 dihydroxycholecalciferol in patients undergoing orthodontic treatment. Odontology. 2024;112(3):966–75.
Sagar S, Ramani P, Ramasubramanian A, et al. Tobacco As a Trigger for Oral Squamous Cell Carcinoma Arising in The Background of Oral Submucous Fibrosis: A Clinicopathological Study. J Popul Ther Clin Pharmacol. 2023;30(6):83–93.
Allafchian A, Saeedi S, Jalali SAH. Biocompatibility of electrospun cell culture scaffolds made from balangu seed mucilage/PVA composites. Nanotechnol. 2021;33(7):075302.
Zhao X, Hu DA, Wu D, et al. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol. 2021;9:603444.
Senthil R. Epoxy resin bioactive dental implant capped with hydroxyapatite and curcumin nanoparticles: a novel approach. Oral Maxillofac Surg. 2024;28:1303–12.
Senthil R, Anitha R, Lakshmi T. Mineralized collagen fiber-based dental implant: novel perspectives. J Adv Oral Res. 2024;15(1):62–9.
Senthil R, Kavukcu SB, Vedakumari WS. Cellulose-based biopolymer nanoscaffold: possible biomedical applications. Int J Biol Macromol. 2023;246:125656.
Comments (0)