WHO Global cancer burden growing, amidst mounting need for services. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services. Accessed 25 April 2024.
Will M, Liang J, Metcalfe C, Chandarlapaty S. Therapeutic resistance to anti-oestrogen therapy in breast cancer. Nat Rev Cancer. 2023;23:673–85. https://doi.org/10.1038/s41568-023-00604-3.
Article CAS PubMed PubMed Central Google Scholar
Sunassee ED, Deutsch RJ, D’Agostino VW, Castellano-Escuder P, Siebeneck EA, Ilkayeva O, Crouch BT, Madonna MC, Everitt J, Alvarez JV, Palmer GM, Hirschey MD, Ramanujam N. Optical imaging reveals chemotherapy-induced metabolic reprogramming of residual disease and recurrence. Sci Adv. 2024;10:eadj7540. https://doi.org/10.1126/sciadv.adj7540.
Article CAS PubMed PubMed Central Google Scholar
Dhas Y, Biswas N, M RD, Jones LD, Ashili S. Repurposing metabolic regulators: antidiabetic drugs as anticancer agents. Mol Biomed. 2024;5:40. https://doi.org/10.1186/s43556-024-00204-z.
Article CAS PubMed PubMed Central Google Scholar
Tobon-Cornejo S, Vargas-Castillo A, Juarez M, Acevedo-Carabantes JA, Noriega LG, Granados-Portillo O, Chavez-Blanco A, Morales-Barcenas R, Torres N, Tovar AR, Schcolnik-Cabrera A. Metabolic reprogramming and synergistic cytotoxicity of genistein and chemotherapy in human breast cancer cells. Life Sci. 2025;370: 123562. https://doi.org/10.1016/j.lfs.2025.123562.
Article CAS PubMed Google Scholar
Ruprecht B, Zaal EA, Zecha J, Wu W, Berkers CR, Kuster B, Lemeer S. Lapatinib resistance in breast cancer cells is accompanied by phosphorylation-mediated reprogramming of glycolysis. Cancer Res. 2017;77:1842–53. https://doi.org/10.1158/0008-5472.CAN-16-2976.
Article CAS PubMed Google Scholar
Korga A, Ostrowska M, Iwan M, Herbet M, Dudka J. Inhibition of glycolysis disrupts cellular antioxidant defense and sensitizes HepG2 cells to doxorubicin treatment. FEBS Open Bio. 2019;9:959–72. https://doi.org/10.1002/2211-5463.12628.
Article CAS PubMed PubMed Central Google Scholar
Bhattacharya A. A fresh cup of DCAF: DCAF13 implicated in a neuromuscular disorder. Eur J Hum Genet. 2023;31:613–4. https://doi.org/10.1038/s41431-023-01340-w.
Article PubMed PubMed Central Google Scholar
Zhang J, Zhang YL, Zhao LW, Pi SB, Zhang SY, Tong C, Fan HY. The CRL4-DCAF13 ubiquitin E3 ligase supports oocyte meiotic resumption by targeting PTEN degradation. Cell Mol Life Sci. 2020;77:2181–97. https://doi.org/10.1007/s00018-019-03280-5.
Article CAS PubMed Google Scholar
Zhang YL, Zhao LW, Zhang J, Le R, Ji SY, Chen C, Gao Y, Li D, Gao S, Fan HY. DCAF13 promotes pluripotency by negatively regulating SUV39H1 stability during early embryonic development. EMBO J. 2018. https://doi.org/10.15252/embj.201898981.
Article PubMed PubMed Central Google Scholar
da Silva Z, Glanzner WG, Gutierrez K, de Macedo MP, Guay V, Currin L, Carrillo MEH, Goncalves PBD, Bordignon V. DCAF13 and RNF114 participate in the regulation of early porcine embryo development. Reproduction. 2023;166:401–10. https://doi.org/10.1530/REP-23-0230.
Wei S, Xing J, Chen J, Chen L, Lv J, Chen X, Li T, Yu T, Wang H, Wang K, Yu W. DCAF13 inhibits the p53 signaling pathway by promoting p53 ubiquitination modification in lung adenocarcinoma. J Exp Clin Cancer Res. 2024;43:3. https://doi.org/10.1186/s13046-023-02936-2.
Article CAS PubMed PubMed Central Google Scholar
Wei S, Lu K, Xing J, Yu W. A multidimensional pan-cancer analysis of DCAF13 and its protumorigenic effect in lung adenocarcinoma. FASEB J. 2023;37: e22849. https://doi.org/10.1096/fj.202201022RRR.
Article CAS PubMed Google Scholar
Wang M, Fu L, Tian J, Zhang Y, Rossi L, Wang K. Function and prognosis analysis of nucleolus protein DCAF13 in breast cancer. Transl Cancer Res. 2023;12:3744–51. https://doi.org/10.21037/tcr-23-1923.
Article CAS PubMed PubMed Central Google Scholar
Tang ZY, Wang XM, Xu CW, Sun QQ, Hua YX, Zhou QY, Hu HY, Liu SB, Guo YJ, Ao L, Che X, Zhang XC, Heger M, Zheng X, Liu AJ, Wang Q, Zhan ZJ, Cheng SQ, Pan WW. DCAF13 promotes ovarian cancer progression by activating FRAS1-mediated FAK signaling pathway. Cell Mol Life Sci. 2024;81:421. https://doi.org/10.1007/s00018-024-05446-2.
Article CAS PubMed PubMed Central Google Scholar
Sun Z, Zhou D, Yang J, Zhang D. Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio. 2022;12:221–30. https://doi.org/10.1002/2211-5463.13330.
Article CAS PubMed Google Scholar
Sun Y, Baechler SA, Zhang X, Kumar S, Factor VM, Arakawa Y, Chau CH, Okamoto K, Parikh A, Walker B, Su YP, Chen J, Ting T, Huang SN, Beck E, Itkin Z, McKnight C, Xie C, Roper N, Nijhawan D, Figg WD, Meltzer PS, Yang JC, Thomas CJ, Pommier Y. Targeting neddylation sensitizes colorectal cancer to topoisomerase I inhibitors by inactivating the DCAF13-CRL4 ubiquitin ligase complex. Nat Commun. 2023;14:3762. https://doi.org/10.1038/s41467-023-39374-9.
Article CAS PubMed PubMed Central Google Scholar
Shan BQ, Wang XM, Zheng L, Han Y, Gao J, Lv MD, Zhang Y, Liu YX, Zhang H, Chen HS, Ao L, Zhang YL, Lu X, Wu ZJ, Xu Y, Che X, Heger M, Cheng SQ, Pan WW, Zhang X. DCAF13 promotes breast cancer cell proliferation by ubiquitin inhibiting PERP expression. Cancer Sci. 2022;113:1587–600. https://doi.org/10.1111/cas.15300.
Article CAS PubMed PubMed Central Google Scholar
Liu J, Li H, Mao A, Lu J, Liu W, Qie J, Pan G. DCAF13 promotes triple-negative breast cancer metastasis by mediating DTX3 mRNA degradation. Cell Cycle. 2020;19:3622–31. https://doi.org/10.1080/15384101.2020.1859196.
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Zhang W, Jiang K, Chen B, Wang K, Lao L, Hou C, Wang F, Zhang C, Shen H. MicroRNA-300 regulates the ubiquitination of PTEN through the CRL4B(DCAF13) E3 ligase in osteosarcoma cells. Mol Ther Nucleic Acids. 2018;10:254–68. https://doi.org/10.1016/j.omtn.2017.12.010.
Article CAS PubMed Google Scholar
Cao J, Hou P, Chen J, Wang P, Wang W, Liu W, Liu C, He X. The overexpression and prognostic role of DCAF13 in hepatocellular carcinoma. Tumour Biol. 2017;39:1010428317705753. https://doi.org/10.1177/1010428317705753.
Article CAS PubMed Google Scholar
Agarwal AP, Kumar MS. Effect of epigenetic changes in hypoxia induced factor (HIF) gene across cancer types. Gene. 2025;934: 149047. https://doi.org/10.1016/j.gene.2024.149047.
Article CAS PubMed Google Scholar
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer. 2024;23:203. https://doi.org/10.1186/s12943-024-02119-3.
Article CAS PubMed PubMed Central Google Scholar
Yu TJ, Ma D, Liu YY, Xiao Y, Gong Y, Jiang YZ, Shao ZM, Hu X, Di GH. Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Mol Ther. 2021;29:2350–65. https://doi.org/10.1016/j.ymthe.2021.03.003.
Article CAS PubMed PubMed Central Google Scholar
El Hassouni B, Granchi C, Valles-Marti A, Supadmanaba IGP, Bononi G, Tuccinardi T, Funel N, Jimenez CR, Peters GJ, Giovannetti E, Minutolo F. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin Cancer Biol. 2020;60:238–48. https://doi.org/10.1016/j.semcancer.2019.08.025.
Article CAS PubMed Google Scholar
Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C, Patergnani S. The interplay of hypoxia signaling on mitochondrial dysfunction and inflammation in cardiovascular diseases and cancer: from molecular mechanisms to therapeutic approaches. Biology (Basel). 2022. https://doi.org/10.3390/biology11020300.
Comments (0)