Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials. 2022;12(3):457. https://doi.org/10.3390/nano12030457.
Article CAS PubMed PubMed Central Google Scholar
Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv. 2021;11(31):19041–58. https://doi.org/10.1039/D1RA01849C.
Article CAS PubMed PubMed Central Google Scholar
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:93. https://doi.org/10.3389/fmolb.2020.00193.
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer drugs: recent strategies to improve stability profile, pharmacokinetic and pharmacodynamicproperties. Molecules. 2022;27(17):5436. https://doi.org/10.3390/molecules27175436.
Article CAS PubMed PubMed Central Google Scholar
Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):1–29. https://doi.org/10.1186/s40824-019-0166-x.
Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology-general aspects: a chemical reduction approach to the synthesis of nanoparticles. Molecules. 2023;28(13):4932. https://doi.org/10.3390/molecules28134932.
Article CAS PubMed PubMed Central Google Scholar
Khurshid I, Singh H, Khan A, Ahmed Mir M, Farooq B, Shawl AI, Hassan S, Ashraf SS, Samad YA, Muzamil S. Metallic nanoparticles for imaging and therapy. In: Functional smart nanomaterials and their theranostics approaches. Cham: Springer Nature Singapore; 2024. p. 65–86.
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MH, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int. 2023;23(1):280. https://doi.org/10.1186/s12935-023-03115-1.
Article CAS PubMed PubMed Central Google Scholar
Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B. 2021;11(8):2265–85. https://doi.org/10.1016/j.apsb.2021.03.033.
Article CAS PubMed PubMed Central Google Scholar
Bhardwaj H, Jangde RK. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnol. 2023;2:100013. https://doi.org/10.1016/j.nxnano.2023.100013.
Alonso C, Nieto C, Vargas JC, Vega MA, del Valle EM. Understanding the growth kinetics of polydopamine nanoparticles as a function of the temperature and the type of alcohol used as solvent media in their polymerization. Chem Eng J Adv. 2024;20:100638. https://doi.org/10.1016/j.ceja.2024.100638.
Batul R, Khaliq A, Alafnan A, Bhave M, Yu A. Investigation of gentamicin release from polydopamine nanoparticles. Appl Sci. 2022;12(13):6319. https://doi.org/10.3390/app12136319.
Carmignani A, Battaglini M, Bartolucci M, Petretto A, Prato M, Ciofani G. Polydopamine nanoparticles as a non-pharmaceutical tool in the treatment of fatty liver disease. Mater Des. 2024;239:112825. https://doi.org/10.1016/j.matdes.2024.112825.
d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ. Polydopamine and eumelanin: from structure–property relationships to a unified tailoring strategy. Acc Chem Res. 2014;47(12):3541–50. https://doi.org/10.1021/ar500273y.
Article CAS PubMed Google Scholar
Franco R, Reyes-Resina I, Navarro G. Dopamine in health and disease: much more than a neurotransmitter. Biomed. 2021;9(2):109. https://doi.org/10.3390/biomedicines9020109.
Mei S, Xu X, Priestley RD, Lu Y. Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials. Chem Sci. 2020;11(45):12269–81. https://doi.org/10.1039/d0sc04486e.
Article CAS PubMed PubMed Central Google Scholar
Menichetti A, Mordini D, Montalti M. Polydopamine nanosystems in drug delivery: effect of size, morphology, and surface charge. Nanomater. 2024;14(3):303. https://doi.org/10.3390/nano14030303.
Witkowska M, Golusińska-Kardach E, Golusiński W, Florek E. Polydopamine-based material and their potential in head and neck cancer therapy—current state of knowledge. Int J Mol Sci. 2023;24(5):4890. https://doi.org/10.3390/ijms24054890.
Article CAS PubMed PubMed Central Google Scholar
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-based biomaterials in orthopedic therapeutics: properties, applications, and future perspectives. Drug Des Dev Ther. 2024. https://doi.org/10.2147/DDDT.S473007.
Hauser D, Septiadi D, Turner J, Petri-Fink A, Rothen-Rutishauser B. From bioinspired glue to medicine: polydopamine as a biomedical material. Materials. 2020;13(7):1730. https://doi.org/10.3390/ma13071730.
Article CAS PubMed PubMed Central Google Scholar
Chen F, Xing Y, Wang Z, Zheng X, Zhang J, Cai K. Nanoscale polydopamine (PDA) meets π–π interactions: an interface-directed coassembly approach for mesoporous nanoparticles. Langmuir. 2016;32(46):12119–28. https://doi.org/10.1021/acs.langmuir.6b03294.
Article CAS PubMed Google Scholar
Chen X, Yang W, Zhang J, Zhang L, Shen H, Shi D. Alkalinity triggered the degradation of polydopamine nanoparticles. Polym Bull. 2021;78:4439–52. https://doi.org/10.1007/s00289-020-03312-2.
Jiang X, Wang Y, Li M. Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter. Sci Rep. 2014;4(1):6070. https://doi.org/10.1038/srep06070.
Article CAS PubMed PubMed Central Google Scholar
Szewczyk J, Babacic V, Krysztofik A, Ivashchenko O, Pochylski M, Pietrzak R, Gapiński J, Graczykowski B, Bechelany M, Coy E. Control of intermolecular interactions toward the production of free-standing interfacial polydopamine films. ACS Appl Mater Interfaces. 2023;15(30):36922–35. https://doi.org/10.1021/acsami.3c05236.
Article CAS PubMed PubMed Central Google Scholar
Ho CC, Ding SJ. The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J Mater Sci Mater Med. 2013;24:2381–90. https://doi.org/10.1007/s10856-013-4994-2.
Article CAS PubMed Google Scholar
Ding L, Zhu X, Wang Y, Shi B, Ling X, Chen H, Nan W, Barrett A, Guo Z, Tao W, Wu J. Intracellular fate of nanoparticles with polydopamine surface engineering and a novel strategy for exocytosis-inhibiting, lysosome impairment-based cancer therapy. Nano Lett. 2017;17(11):6790–801. https://doi.org/10.1021/acs.nanolett.7b03021.
Article CAS PubMed Google Scholar
Wu M, Zhang D, Liu X. Nanoclusters of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-directed, ultrasensitive MRI-guided photothermal cancer therapy. Nanotechnology. 2015;213:78–78. https://doi.org/10.1088/0957-4484/26/11/115102.
Lei W, Sun C, Jiang T, Gao Y, Yang Y, Zhao Q, Wang S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater Sci Eng C Mater Biol Appl C. 2019;105:110103. https://doi.org/10.1016/j.msec.2019.110103.
Comments (0)