A review on the advancement of polydopamine (PDA)-based nanomaterials for cancer treatment

Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials. 2022;12(3):457. https://doi.org/10.3390/nano12030457.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv. 2021;11(31):19041–58. https://doi.org/10.1039/D1RA01849C.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:93. https://doi.org/10.3389/fmolb.2020.00193.

Article  CAS  Google Scholar 

Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer drugs: recent strategies to improve stability profile, pharmacokinetic and pharmacodynamicproperties. Molecules. 2022;27(17):5436. https://doi.org/10.3390/molecules27175436.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):1–29. https://doi.org/10.1186/s40824-019-0166-x.

Article  CAS  Google Scholar 

Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology-general aspects: a chemical reduction approach to the synthesis of nanoparticles. Molecules. 2023;28(13):4932. https://doi.org/10.3390/molecules28134932.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khurshid I, Singh H, Khan A, Ahmed Mir M, Farooq B, Shawl AI, Hassan S, Ashraf SS, Samad YA, Muzamil S. Metallic nanoparticles for imaging and therapy. In: Functional smart nanomaterials and their theranostics approaches. Cham: Springer Nature Singapore; 2024. p. 65–86.

Chapter  Google Scholar 

Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MH, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int. 2023;23(1):280. https://doi.org/10.1186/s12935-023-03115-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B. 2021;11(8):2265–85. https://doi.org/10.1016/j.apsb.2021.03.033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhardwaj H, Jangde RK. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnol. 2023;2:100013. https://doi.org/10.1016/j.nxnano.2023.100013.

Article  Google Scholar 

Alonso C, Nieto C, Vargas JC, Vega MA, del Valle EM. Understanding the growth kinetics of polydopamine nanoparticles as a function of the temperature and the type of alcohol used as solvent media in their polymerization. Chem Eng J Adv. 2024;20:100638. https://doi.org/10.1016/j.ceja.2024.100638.

Article  CAS  Google Scholar 

Batul R, Khaliq A, Alafnan A, Bhave M, Yu A. Investigation of gentamicin release from polydopamine nanoparticles. Appl Sci. 2022;12(13):6319. https://doi.org/10.3390/app12136319.

Article  CAS  Google Scholar 

Carmignani A, Battaglini M, Bartolucci M, Petretto A, Prato M, Ciofani G. Polydopamine nanoparticles as a non-pharmaceutical tool in the treatment of fatty liver disease. Mater Des. 2024;239:112825. https://doi.org/10.1016/j.matdes.2024.112825.

Article  CAS  Google Scholar 

d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ. Polydopamine and eumelanin: from structure–property relationships to a unified tailoring strategy. Acc Chem Res. 2014;47(12):3541–50. https://doi.org/10.1021/ar500273y.

Article  CAS  PubMed  Google Scholar 

Franco R, Reyes-Resina I, Navarro G. Dopamine in health and disease: much more than a neurotransmitter. Biomed. 2021;9(2):109. https://doi.org/10.3390/biomedicines9020109.

Article  CAS  Google Scholar 

Mei S, Xu X, Priestley RD, Lu Y. Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials. Chem Sci. 2020;11(45):12269–81. https://doi.org/10.1039/d0sc04486e.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menichetti A, Mordini D, Montalti M. Polydopamine nanosystems in drug delivery: effect of size, morphology, and surface charge. Nanomater. 2024;14(3):303. https://doi.org/10.3390/nano14030303.

Article  CAS  Google Scholar 

Witkowska M, Golusińska-Kardach E, Golusiński W, Florek E. Polydopamine-based material and their potential in head and neck cancer therapy—current state of knowledge. Int J Mol Sci. 2023;24(5):4890. https://doi.org/10.3390/ijms24054890.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-based biomaterials in orthopedic therapeutics: properties, applications, and future perspectives. Drug Des Dev Ther. 2024. https://doi.org/10.2147/DDDT.S473007.

Article  Google Scholar 

Hauser D, Septiadi D, Turner J, Petri-Fink A, Rothen-Rutishauser B. From bioinspired glue to medicine: polydopamine as a biomedical material. Materials. 2020;13(7):1730. https://doi.org/10.3390/ma13071730.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen F, Xing Y, Wang Z, Zheng X, Zhang J, Cai K. Nanoscale polydopamine (PDA) meets π–π interactions: an interface-directed coassembly approach for mesoporous nanoparticles. Langmuir. 2016;32(46):12119–28. https://doi.org/10.1021/acs.langmuir.6b03294.

Article  CAS  PubMed  Google Scholar 

Chen X, Yang W, Zhang J, Zhang L, Shen H, Shi D. Alkalinity triggered the degradation of polydopamine nanoparticles. Polym Bull. 2021;78:4439–52. https://doi.org/10.1007/s00289-020-03312-2.

Article  CAS  Google Scholar 

Jiang X, Wang Y, Li M. Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter. Sci Rep. 2014;4(1):6070. https://doi.org/10.1038/srep06070.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szewczyk J, Babacic V, Krysztofik A, Ivashchenko O, Pochylski M, Pietrzak R, Gapiński J, Graczykowski B, Bechelany M, Coy E. Control of intermolecular interactions toward the production of free-standing interfacial polydopamine films. ACS Appl Mater Interfaces. 2023;15(30):36922–35. https://doi.org/10.1021/acsami.3c05236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho CC, Ding SJ. The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J Mater Sci Mater Med. 2013;24:2381–90. https://doi.org/10.1007/s10856-013-4994-2.

Article  CAS  PubMed  Google Scholar 

Ding L, Zhu X, Wang Y, Shi B, Ling X, Chen H, Nan W, Barrett A, Guo Z, Tao W, Wu J. Intracellular fate of nanoparticles with polydopamine surface engineering and a novel strategy for exocytosis-inhibiting, lysosome impairment-based cancer therapy. Nano Lett. 2017;17(11):6790–801. https://doi.org/10.1021/acs.nanolett.7b03021.

Article  CAS  PubMed  Google Scholar 

Wu M, Zhang D, Liu X. Nanoclusters of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-directed, ultrasensitive MRI-guided photothermal cancer therapy. Nanotechnology. 2015;213:78–78. https://doi.org/10.1088/0957-4484/26/11/115102.

Article  CAS  Google Scholar 

Lei W, Sun C, Jiang T, Gao Y, Yang Y, Zhao Q, Wang S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater Sci Eng C Mater Biol Appl C. 2019;105:110103. https://doi.org/10.1016/j.msec.2019.110103.

Article  CAS 

Comments (0)

No login
gif