Liebig C, et al. Perineural invasion in cancer. Cancer. 2009. https://doi.org/10.1002/cncr.24396.
Bakst RL, Wong RJ. Mechanisms of perineural invasion. J Neurol Surg. 2016. https://doi.org/10.1055/s-0036-1571835.
Lee JT, et al. Prediction of perineural invasion and its prognostic value in patients with prostate cancer. Korean J Urol. 2010. https://doi.org/10.4111/kju.2010.51.11.745.
Article PubMed PubMed Central Google Scholar
Chen SH, et al. 2019. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Front Oncol.
Deng J, et al. Prognostic value of perineural invasion in gastric cancer: a systematic review and meta-analysis. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0088907.
Article PubMed PubMed Central Google Scholar
Gao A, et al. Prognostic value of perineural invasion in esophageal and esophagogastric junction carcinoma: a meta-analysis. Dis Markers. 2016. https://doi.org/10.1155/2016/7340180.
Article PubMed PubMed Central Google Scholar
Gasparini G, et al. Nerves and pancreatic cancer: new insights into a dangerous relationship. Cancers. 2019. https://doi.org/10.3390/cancers11070893.
Article PubMed PubMed Central Google Scholar
Schmitd LB, et al. Perineural invasion in head and neck cancer. J Dent Res. 2018. https://doi.org/10.1177/0022034518756297.
Article PubMed PubMed Central Google Scholar
Namikawa K, et al. Clinical impact of ulceration width, lymphovascular invasion, microscopic satellitosis, perineural invasion, and mitotic rate in patients undergoing sentinel lymph node biopsy for cutaneous melanoma. Cancer Med. 2018. https://doi.org/10.1002/cam4.1320.
Article PubMed PubMed Central Google Scholar
Shan C, et al. Schwann cells promote EMT and the Schwann-like differentiation of salivary adenoid cystic carcinoma cells via the BDNF/TrkB axis. Oncol Rep. 2015. https://doi.org/10.3892/or.2015.4366.
Article PubMed PubMed Central Google Scholar
Huang T, Fan Q, Wang Y, et al. Schwann cell-derived CCL2 promotes the perineural invasion of cervical cancer. Front Oncol. 2020;10:19. https://doi.org/10.3389/fonc.2020.00019.
Article PubMed PubMed Central Google Scholar
Bakst RL, et al. Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression. Can Res. 2017. https://doi.org/10.1158/0008-5472.can-17-1612.
Sroka IC, et al. Schwann cells increase prostate and pancreatic tumor cell invasion using laminin binding A6 integrin. J Cell Biochem. 2015. https://doi.org/10.1002/jcb.25300.
Roger L, et al. Schwann cells support oncogenic potential of pancreatic cancer cells through TGF signaling. Cell Death Dis. 2019. https://doi.org/10.1038/s41419-019-2116-x.
Article PubMed PubMed Central Google Scholar
Shurin GV, et al. Melanoma-induced reprogramming of Schwann cell signaling aids tumor growth. Cancer Res. 2019. https://doi.org/10.1158/0008-5472.can-18-3872.
Article PubMed PubMed Central Google Scholar
Ayyalasomayajula R, Cudic M. Targeting siglec-sialylated MUC1 immune axis in cancer. Cancers. 2024;16(7):1334. https://doi.org/10.3390/cancers16071334.
Article CAS PubMed PubMed Central Google Scholar
Li J, et al. Hyperglycemic tumor microenvironment induces perineural invasion in pancreatic cancer. Cancer Biol Ther. 2015. https://doi.org/10.1080/15384047.2015.1040952.
Article PubMed PubMed Central Google Scholar
Nan L, et al. Pancreatic stellate cells facilitate perineural invasion of pancreatic cancer via HGF/c-Met pathway. Cell Transplant. 2019. https://doi.org/10.1177/0963689719851772.
Article PubMed PubMed Central Google Scholar
Demir I, Friess H, Ceyhan G. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2015. https://doi.org/10.1038/nrgastro.2015.166.
Amit M, Na’ara S, Gil Z. Mechanisms of cancer dissemination along nerves. Nat Rev Cancer. 2016;16(6):399–408. https://doi.org/10.1038/nrc.2016.38.
Article CAS PubMed Google Scholar
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: molecular mechanisms and clinical perspectives. Pharmacol Ther. 2023;250:108522. https://doi.org/10.1016/j.pharmthera.2023.108522.
Article CAS PubMed Google Scholar
Deborde S, Wong RJ. How Schwann cells facilitate cancer progression in nerves. Cell Mol Life Sci. 2017;74(24):4405–20. https://doi.org/10.1007/s00018-017-2578-x.
Article CAS PubMed PubMed Central Google Scholar
Abdullaeva U, Pape B, Hirvonen J. Diagnostic accuracy of MRI in detecting the perineural spread of head and neck tumors: a systematic review and meta-analysis. Diagnostics (Basel). 2024;14(1):113. https://doi.org/10.3390/diagnostics14010113.
Bakst RL, Glastonbury CM, Parvathaneni U, Katabi N, Hu KS, Yom SS. Perineural invasion and perineural tumor spread in head and neck cancer. Int J Radiat Oncol Biol Phys. 2019;103(5):1109–24. https://doi.org/10.1016/j.ijrobp.2018.12.009.
Knops A, et al. Cancer-associated fibroblast density, prognostic characteristics, and recurrence in head and neck squamous cell carcinoma: a meta-analysis. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.565306.
Article PubMed PubMed Central Google Scholar
Li J, et al. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun. 2021. https://doi.org/10.1002/cac2.12188.
Cavel O, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Can Res. 2012. https://doi.org/10.1158/0008-5472.can-12-0764.
Xu Q, et al. Stromal-derived factor-1/CXCL12-CXCR4 Chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget. 2014. https://doi.org/10.18632/oncotarget.3069.
Article PubMed PubMed Central Google Scholar
Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912–9. https://doi.org/10.1080/09553002.2019.1589653.
Article CAS PubMed Google Scholar
Malkov MI, Lee CT, Taylor CT. Regulation of the hypoxia-inducible factor (HIF) by pro-inflammatory cytokines. Cells. 2021;10(9):2340. https://doi.org/10.3390/cells10092340.
Article CAS PubMed PubMed Central Google Scholar
Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. Med Oncol. 2022;40(1):12. https://doi.org/10.1007/s12032-022-01871-0.
Khan SU, Jan S, Fatima K, Malik F. Immune cells: critical players in drug resistance. In: Khan SU, Malik F, editors. Drug resistance in cancer: mechanisms and strategies. Singapore: Springer; 2024. https://doi.org/10.1007/978-981-97-1666-1_4.
Comments (0)