Molecular mechanisms and clinical significance of perineural invasion in malignancies: the pivotal role of tumor-associated Schwann cells in cancer progression and metastasis

Liebig C, et al. Perineural invasion in cancer. Cancer. 2009. https://doi.org/10.1002/cncr.24396.

Article  PubMed  Google Scholar 

Bakst RL, Wong RJ. Mechanisms of perineural invasion. J Neurol Surg. 2016. https://doi.org/10.1055/s-0036-1571835.

Article  Google Scholar 

Lee JT, et al. Prediction of perineural invasion and its prognostic value in patients with prostate cancer. Korean J Urol. 2010. https://doi.org/10.4111/kju.2010.51.11.745.

Article  PubMed  PubMed Central  Google Scholar 

Chen SH, et al. 2019. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Front Oncol.

Deng J, et al. Prognostic value of perineural invasion in gastric cancer: a systematic review and meta-analysis. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0088907.

Article  PubMed  PubMed Central  Google Scholar 

Gao A, et al. Prognostic value of perineural invasion in esophageal and esophagogastric junction carcinoma: a meta-analysis. Dis Markers. 2016. https://doi.org/10.1155/2016/7340180.

Article  PubMed  PubMed Central  Google Scholar 

Gasparini G, et al. Nerves and pancreatic cancer: new insights into a dangerous relationship. Cancers. 2019. https://doi.org/10.3390/cancers11070893.

Article  PubMed  PubMed Central  Google Scholar 

Schmitd LB, et al. Perineural invasion in head and neck cancer. J Dent Res. 2018. https://doi.org/10.1177/0022034518756297.

Article  PubMed  PubMed Central  Google Scholar 

Namikawa K, et al. Clinical impact of ulceration width, lymphovascular invasion, microscopic satellitosis, perineural invasion, and mitotic rate in patients undergoing sentinel lymph node biopsy for cutaneous melanoma. Cancer Med. 2018. https://doi.org/10.1002/cam4.1320.

Article  PubMed  PubMed Central  Google Scholar 

Shan C, et al. Schwann cells promote EMT and the Schwann-like differentiation of salivary adenoid cystic carcinoma cells via the BDNF/TrkB axis. Oncol Rep. 2015. https://doi.org/10.3892/or.2015.4366.

Article  PubMed  PubMed Central  Google Scholar 

Huang T, Fan Q, Wang Y, et al. Schwann cell-derived CCL2 promotes the perineural invasion of cervical cancer. Front Oncol. 2020;10:19. https://doi.org/10.3389/fonc.2020.00019.

Article  PubMed  PubMed Central  Google Scholar 

Bakst RL, et al. Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression. Can Res. 2017. https://doi.org/10.1158/0008-5472.can-17-1612.

Article  Google Scholar 

Sroka IC, et al. Schwann cells increase prostate and pancreatic tumor cell invasion using laminin binding A6 integrin. J Cell Biochem. 2015. https://doi.org/10.1002/jcb.25300.

Article  Google Scholar 

Roger L, et al. Schwann cells support oncogenic potential of pancreatic cancer cells through TGF signaling. Cell Death Dis. 2019. https://doi.org/10.1038/s41419-019-2116-x.

Article  PubMed  PubMed Central  Google Scholar 

Shurin GV, et al. Melanoma-induced reprogramming of Schwann cell signaling aids tumor growth. Cancer Res. 2019. https://doi.org/10.1158/0008-5472.can-18-3872.

Article  PubMed  PubMed Central  Google Scholar 

Ayyalasomayajula R, Cudic M. Targeting siglec-sialylated MUC1 immune axis in cancer. Cancers. 2024;16(7):1334. https://doi.org/10.3390/cancers16071334.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, et al. Hyperglycemic tumor microenvironment induces perineural invasion in pancreatic cancer. Cancer Biol Ther. 2015. https://doi.org/10.1080/15384047.2015.1040952.

Article  PubMed  PubMed Central  Google Scholar 

Nan L, et al. Pancreatic stellate cells facilitate perineural invasion of pancreatic cancer via HGF/c-Met pathway. Cell Transplant. 2019. https://doi.org/10.1177/0963689719851772.

Article  PubMed  PubMed Central  Google Scholar 

Demir I, Friess H, Ceyhan G. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2015. https://doi.org/10.1038/nrgastro.2015.166.

Article  PubMed  Google Scholar 

Amit M, Na’ara S, Gil Z. Mechanisms of cancer dissemination along nerves. Nat Rev Cancer. 2016;16(6):399–408. https://doi.org/10.1038/nrc.2016.38.

Article  CAS  PubMed  Google Scholar 

Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: molecular mechanisms and clinical perspectives. Pharmacol Ther. 2023;250:108522. https://doi.org/10.1016/j.pharmthera.2023.108522.

Article  CAS  PubMed  Google Scholar 

Deborde S, Wong RJ. How Schwann cells facilitate cancer progression in nerves. Cell Mol Life Sci. 2017;74(24):4405–20. https://doi.org/10.1007/s00018-017-2578-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdullaeva U, Pape B, Hirvonen J. Diagnostic accuracy of MRI in detecting the perineural spread of head and neck tumors: a systematic review and meta-analysis. Diagnostics (Basel). 2024;14(1):113. https://doi.org/10.3390/diagnostics14010113.

Article  PubMed  Google Scholar 

Bakst RL, Glastonbury CM, Parvathaneni U, Katabi N, Hu KS, Yom SS. Perineural invasion and perineural tumor spread in head and neck cancer. Int J Radiat Oncol Biol Phys. 2019;103(5):1109–24. https://doi.org/10.1016/j.ijrobp.2018.12.009.

Article  PubMed  Google Scholar 

Knops A, et al. Cancer-associated fibroblast density, prognostic characteristics, and recurrence in head and neck squamous cell carcinoma: a meta-analysis. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.565306.

Article  PubMed  PubMed Central  Google Scholar 

Li J, et al. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun. 2021. https://doi.org/10.1002/cac2.12188.

Article  Google Scholar 

Cavel O, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Can Res. 2012. https://doi.org/10.1158/0008-5472.can-12-0764.

Article  Google Scholar 

Xu Q, et al. Stromal-derived factor-1/CXCL12-CXCR4 Chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget. 2014. https://doi.org/10.18632/oncotarget.3069.

Article  PubMed  PubMed Central  Google Scholar 

Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912–9. https://doi.org/10.1080/09553002.2019.1589653.

Article  CAS  PubMed  Google Scholar 

Malkov MI, Lee CT, Taylor CT. Regulation of the hypoxia-inducible factor (HIF) by pro-inflammatory cytokines. Cells. 2021;10(9):2340. https://doi.org/10.3390/cells10092340.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. Med Oncol. 2022;40(1):12. https://doi.org/10.1007/s12032-022-01871-0.

Article  PubMed  Google Scholar 

Khan SU, Jan S, Fatima K, Malik F. Immune cells: critical players in drug resistance. In: Khan SU, Malik F, editors. Drug resistance in cancer: mechanisms and strategies. Singapore: Springer; 2024. https://doi.org/10.1007/978-981-97-1666-1_4.

Chapter 

Comments (0)

No login
gif