Kumar S, et al. Moringa oleifera L. leaf extract induces cell cycle arrest and mitochondrial apoptosis in Dalton’s Lymphoma: An in vitro and in vivo study. J Ethnopharmacol. 2023;302:115849. https://doi.org/10.1016/j.jep.2022.115849.
Article CAS PubMed Google Scholar
Bray F, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63. https://doi.org/10.3322/caac.21834.
Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A, Rawla P. Epidemiology of non-hodgkin’s lymphoma. Med Sci Basel Switz. 2021;9(1):5. https://doi.org/10.3390/medsci9010005.
Singh RK, et al. Evidence that PKCα inhibition in Dalton’s Lymphoma cells augments cell cycle arrest and mitochondrial-dependent apoptosis. Leuk Res. 2022;113: 106772. https://doi.org/10.1016/j.leukres.2021.106772.
Article CAS PubMed Google Scholar
Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol J Hematol Oncol. 2017;10(1):67. https://doi.org/10.1186/s13045-017-0436-9.
Article CAS PubMed Google Scholar
Würth R, Thellung S, Bajetto A, Mazzanti M, Florio T, Barbieri F. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today. 2016;21(1):190–9. https://doi.org/10.1016/j.drudis.2015.09.017.
Article CAS PubMed Google Scholar
Tang M, et al. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res. 2021;163: 105207. https://doi.org/10.1016/j.phrs.2020.105207.
Article CAS PubMed Google Scholar
Campbell WC, Fisher MH, Stapley EO, Albers-Schönberg G, Jacob TA. Ivermectin: a potent new antiparasitic agent. Science. 1983;221(4613):823–8. https://doi.org/10.1126/science.6308762.
Article CAS PubMed Google Scholar
Chabala JC, et al. Ivermectin, a new broad-spectrum antiparasitic agent. J Med Chem. 1980;23(10):1134–6. https://doi.org/10.1021/jm00184a014.
Article CAS PubMed Google Scholar
Njoo FL, Hack CE, Oosting J, Stilma JS, Kijlstra A. Neutrophil activation in ivermectin-treated onchocerciasis patients. Clin Exp Immunol. 1993;94(2):330–3. https://doi.org/10.1111/j.1365-2249.1993.tb03452.x.
Article CAS PubMed PubMed Central Google Scholar
Kumaraswami V, et al. Ivermectin for the treatment of Wuchereria bancrofti filariasis. Efficacy and adverse reactions. JAMA. 1988;259(21):3150–3.
Article CAS PubMed Google Scholar
Marti H, et al. A comparative trial of a single-dose ivermectin versus three days of albendazole for treatment of Strongyloides stercoralis and other soil-transmitted helminth infections in children. Am J Trop Med Hyg. 1996;55(5):477–81. https://doi.org/10.4269/ajtmh.1996.55.477.
Article CAS PubMed Google Scholar
Udensi UK, Fagbenro-Beyioku AF. Effect of ivermectin on Trypanosoma brucei brucei in experimentally infected mice. J Vector Borne Dis. 2012;49(3):143–50.
Hanafi HA, et al. Effects of ivermectin on blood-feeding Phlebotomus papatasi, and the promastigote stage of Leishmania major. Vector Borne Zoonotic Dis Larchmt N. 2011;11(1):43–52. https://doi.org/10.1089/vbz.2009.0030.
Basyoni MMA, El-Sabaa A-AA. Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. Korean J Parasitol. 2013;51(3):297–304. https://doi.org/10.3347/kjp.2013.51.3.297.
Article CAS PubMed PubMed Central Google Scholar
Ouédraogo AL, et al. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60(3):357–65. https://doi.org/10.1093/cid/ciu797.
Kane NS, et al. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proc Natl Acad Sci U S A. 2000;97(25):13949–54. https://doi.org/10.1073/pnas.240464697.
Article CAS PubMed PubMed Central Google Scholar
Fritz LC, Wang CC, Gorio A. Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc Natl Acad Sci U S A. 1979;76(4):2062–6. https://doi.org/10.1073/pnas.76.4.2062.
Article CAS PubMed PubMed Central Google Scholar
Zhou S, et al. Ivermectin has new application in inhibiting colorectal cancer cell growth. Front Pharmacol. 2021;12: 717529. https://doi.org/10.3389/fphar.2021.717529.
Article CAS PubMed PubMed Central Google Scholar
Kodama M, et al. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2017;114(35):E7301–10. https://doi.org/10.1073/pnas.1705441114.
Article CAS PubMed PubMed Central Google Scholar
Kwon Y-J, et al. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol Cancer Ther. 2015;14(8):1824–36. https://doi.org/10.1158/1535-7163.MCT-14-0980-T.
Article CAS PubMed PubMed Central Google Scholar
Sharmeen S, et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood. 2010;116(18):3593–603. https://doi.org/10.1182/blood-2010-01-262675.
Article CAS PubMed Google Scholar
Jiang L, Wang P, Sun Y-J, Wu Y-J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res CR. 2019;38(1):265. https://doi.org/10.1186/s13046-019-1251-7.
Article CAS PubMed Google Scholar
Juarez M, Schcolnik-Cabrera A, Dominguez-Gomez G, Chavez-Blanco A, Diaz-Chavez J, Duenas-Gonzalez A. Antitumor effects of ivermectin at clinically feasible concentrations support its clinical development as a repositioned cancer drug. Cancer Chemother Pharmacol. 2020;85(6):1153–63. https://doi.org/10.1007/s00280-020-04041-z.
Article CAS PubMed Google Scholar
Liu J, Zhang K, Cheng L, Zhu H, Xu T. Progress in understanding the molecular mechanisms underlying the antitumour effects of ivermectin. Drug Des Devel Ther. 2020;14:285–96. https://doi.org/10.2147/DDDT.S237393.
Article CAS PubMed PubMed Central Google Scholar
Raj Kumar K. Dalton’s lymphoma as a murine model for understanding the progression and development of T-cell lymphoma and its role in drug discovery. Int J Immunother Cancer Res. 2017. https://doi.org/10.17352/2455-8591.000011.
Chandra S, Jaiswal S, Shukla A, Singh AK, Garai S, Bharti A, Bharty MK. Solvent-dependent crystallization and anti-cancer activities based on Ni (II) and Co (II) complexes of 1-picolinoyl-4-phenyl-3-thiosemicarbazide: Synthesis, crystal structure, and photoluminescence study. J Mol Struct. 2023;1294:136473.
Singh RK, Verma PK, Kumar A, Kumar S, Acharya A. Achyranthes aspera L. leaf extract induced anticancer effects on Dalton’s Lymphoma via regulation of PKCα signaling pathway and mitochondrial apoptosis. J Ethnopharmacol. 2021;274:114060.
Article CAS PubMed Google Scholar
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
Comments (0)