Antitumor potential of ivermectin against T-cell lymphoma-bearing hosts

Kumar S, et al. Moringa oleifera L. leaf extract induces cell cycle arrest and mitochondrial apoptosis in Dalton’s Lymphoma: An in vitro and in vivo study. J Ethnopharmacol. 2023;302:115849. https://doi.org/10.1016/j.jep.2022.115849.

Article  CAS  PubMed  Google Scholar 

Bray F, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63. https://doi.org/10.3322/caac.21834.

Article  PubMed  Google Scholar 

Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A, Rawla P. Epidemiology of non-hodgkin’s lymphoma. Med Sci Basel Switz. 2021;9(1):5. https://doi.org/10.3390/medsci9010005.

Article  Google Scholar 

Singh RK, et al. Evidence that PKCα inhibition in Dalton’s Lymphoma cells augments cell cycle arrest and mitochondrial-dependent apoptosis. Leuk Res. 2022;113: 106772. https://doi.org/10.1016/j.leukres.2021.106772.

Article  CAS  PubMed  Google Scholar 

Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol J Hematol Oncol. 2017;10(1):67. https://doi.org/10.1186/s13045-017-0436-9.

Article  CAS  PubMed  Google Scholar 

Würth R, Thellung S, Bajetto A, Mazzanti M, Florio T, Barbieri F. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today. 2016;21(1):190–9. https://doi.org/10.1016/j.drudis.2015.09.017.

Article  CAS  PubMed  Google Scholar 

Tang M, et al. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res. 2021;163: 105207. https://doi.org/10.1016/j.phrs.2020.105207.

Article  CAS  PubMed  Google Scholar 

Campbell WC, Fisher MH, Stapley EO, Albers-Schönberg G, Jacob TA. Ivermectin: a potent new antiparasitic agent. Science. 1983;221(4613):823–8. https://doi.org/10.1126/science.6308762.

Article  CAS  PubMed  Google Scholar 

Chabala JC, et al. Ivermectin, a new broad-spectrum antiparasitic agent. J Med Chem. 1980;23(10):1134–6. https://doi.org/10.1021/jm00184a014.

Article  CAS  PubMed  Google Scholar 

Njoo FL, Hack CE, Oosting J, Stilma JS, Kijlstra A. Neutrophil activation in ivermectin-treated onchocerciasis patients. Clin Exp Immunol. 1993;94(2):330–3. https://doi.org/10.1111/j.1365-2249.1993.tb03452.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumaraswami V, et al. Ivermectin for the treatment of Wuchereria bancrofti filariasis. Efficacy and adverse reactions. JAMA. 1988;259(21):3150–3.

Article  CAS  PubMed  Google Scholar 

Marti H, et al. A comparative trial of a single-dose ivermectin versus three days of albendazole for treatment of Strongyloides stercoralis and other soil-transmitted helminth infections in children. Am J Trop Med Hyg. 1996;55(5):477–81. https://doi.org/10.4269/ajtmh.1996.55.477.

Article  CAS  PubMed  Google Scholar 

Udensi UK, Fagbenro-Beyioku AF. Effect of ivermectin on Trypanosoma brucei brucei in experimentally infected mice. J Vector Borne Dis. 2012;49(3):143–50.

Article  PubMed  Google Scholar 

Hanafi HA, et al. Effects of ivermectin on blood-feeding Phlebotomus papatasi, and the promastigote stage of Leishmania major. Vector Borne Zoonotic Dis Larchmt N. 2011;11(1):43–52. https://doi.org/10.1089/vbz.2009.0030.

Article  Google Scholar 

Basyoni MMA, El-Sabaa A-AA. Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. Korean J Parasitol. 2013;51(3):297–304. https://doi.org/10.3347/kjp.2013.51.3.297.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouédraogo AL, et al. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60(3):357–65. https://doi.org/10.1093/cid/ciu797.

Article  CAS  Google Scholar 

Kane NS, et al. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proc Natl Acad Sci U S A. 2000;97(25):13949–54. https://doi.org/10.1073/pnas.240464697.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fritz LC, Wang CC, Gorio A. Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc Natl Acad Sci U S A. 1979;76(4):2062–6. https://doi.org/10.1073/pnas.76.4.2062.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou S, et al. Ivermectin has new application in inhibiting colorectal cancer cell growth. Front Pharmacol. 2021;12: 717529. https://doi.org/10.3389/fphar.2021.717529.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kodama M, et al. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2017;114(35):E7301–10. https://doi.org/10.1073/pnas.1705441114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwon Y-J, et al. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol Cancer Ther. 2015;14(8):1824–36. https://doi.org/10.1158/1535-7163.MCT-14-0980-T.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharmeen S, et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood. 2010;116(18):3593–603. https://doi.org/10.1182/blood-2010-01-262675.

Article  CAS  PubMed  Google Scholar 

Jiang L, Wang P, Sun Y-J, Wu Y-J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res CR. 2019;38(1):265. https://doi.org/10.1186/s13046-019-1251-7.

Article  CAS  PubMed  Google Scholar 

Juarez M, Schcolnik-Cabrera A, Dominguez-Gomez G, Chavez-Blanco A, Diaz-Chavez J, Duenas-Gonzalez A. Antitumor effects of ivermectin at clinically feasible concentrations support its clinical development as a repositioned cancer drug. Cancer Chemother Pharmacol. 2020;85(6):1153–63. https://doi.org/10.1007/s00280-020-04041-z.

Article  CAS  PubMed  Google Scholar 

Liu J, Zhang K, Cheng L, Zhu H, Xu T. Progress in understanding the molecular mechanisms underlying the antitumour effects of ivermectin. Drug Des Devel Ther. 2020;14:285–96. https://doi.org/10.2147/DDDT.S237393.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raj Kumar K. Dalton’s lymphoma as a murine model for understanding the progression and development of T-cell lymphoma and its role in drug discovery. Int J Immunother Cancer Res. 2017. https://doi.org/10.17352/2455-8591.000011.

Article  Google Scholar 

Chandra S, Jaiswal S, Shukla A, Singh AK, Garai S, Bharti A, Bharty MK. Solvent-dependent crystallization and anti-cancer activities based on Ni (II) and Co (II) complexes of 1-picolinoyl-4-phenyl-3-thiosemicarbazide: Synthesis, crystal structure, and photoluminescence study. J Mol Struct. 2023;1294:136473.

Article  CAS  Google Scholar 

Singh RK, Verma PK, Kumar A, Kumar S, Acharya A. Achyranthes aspera L. leaf extract induced anticancer effects on Dalton’s Lymphoma via regulation of PKCα signaling pathway and mitochondrial apoptosis. J Ethnopharmacol. 2021;274:114060.

Article  CAS  PubMed  Google Scholar 

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

Comments (0)

No login
gif