Afonso AL, Cavaleiro CT, Castanho MA, Neves V, Cavaco M. The potential of peptide-based inhibitors in disrupting protein-protein interactions for targeted cancer therapy. Int J Mol Sci. 2025;26(7):3117.
Article PubMed PubMed Central CAS Google Scholar
Arora S, Singh M, Dharmamoorthy G, Bhati D, Gupta T, Patel A, Bhattacharjee A, Bhatt P. Advancements in peptide-based therapeutics: design, synthesis and clinical applications. Biochem Cell Arch. 2023;2:23.
D’Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: exploring synthetic peptide-based anticancer vaccines. J Pept Sci. 2024;30(8):e3596.
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of immune checkpoints: small molecule-and peptide-based approaches. J Personalized Med. 2024;14(1):68.
Fu Y, Tang R, Zhao X. Engineering cytokines for cancer immunotherapy: a systematic review. Front Immunol. 2023;6(14):1218082.
Harini K, Girigoswami K, Thirumalai A, Girigoswami A. Polymer-based antimicrobial peptide mimetics for treating multi-drug resistant infections: therapy and toxicity evaluation. Int J Pept Res Ther. 2024;30(6):64.
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer. 2023;110(12):1288–300.
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-homing peptides as crucial component of magnetic-based delivery systems: recent developments and pharmacoeconomical perspective. Int J Mol Sci. 2024;25(11):6219.
Article PubMed PubMed Central CAS Google Scholar
Vora D, Dandekar AA, Banga AK. Therapeutic peptide delivery: fundamentals, formulations, and recent advances. Pept Therapeutics: Fundamentals Des Dev Delivery. 2022;27:183–201.
Lamers C. Overcoming the shortcomings of peptide-based therapeutics. Future Drug Discov. 2022;4(2):FDD75.
Sui X, Niu X, Zhou X, Gao Y. Peptide drugs: a new direction in cancer immunotherapy. Cancer Biol Med. 2023;21(3):198.
PubMed PubMed Central Google Scholar
Mercer DK, O’Neil DA. Innate inspiration: antifungal peptides and other Immunotherapeutics from the host immune response. Front Immunol. 2020;11:2177.
Article PubMed PubMed Central CAS Google Scholar
Kaumaya PT. A paradigm shift: cancer therapy with peptide-based B-cell epitopes and peptide immunotherapeutics targeting multiple solid tumor types: emerging concepts and validation of combination immunotherapy. Hum Vaccin Immunother. 2015;11(6):1368–86.
Article PubMed PubMed Central Google Scholar
Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy. 2014;6(6):755–74.
Article PubMed CAS Google Scholar
Spiering MJ. Primer on the immune system. Alcohol Res: Curr Rev. 2015;37(2):171.
Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol. 2002;2(6):389–400.
Article PubMed CAS Google Scholar
Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S, e Sousa CR. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022–37.
Article PubMed PubMed Central Google Scholar
Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, Nelson AE, Loo K, Kumar R, Rosenblum MD, Alvarado MD. A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nat Med. 2018;24(8):1178–91.
Article PubMed PubMed Central CAS Google Scholar
Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity. 2018;49(4):754–63.
Article PubMed PubMed Central CAS Google Scholar
Scharton TM, Scott P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J Exp Med. 1993;178(2):567–77.
Article PubMed CAS Google Scholar
Perera Molligoda Arachchige AS. Human NK cells: from development to effector functions. Innate Immun. 2021;27(3):212–29.
Article PubMed PubMed Central CAS Google Scholar
Sharma AK. Immunology: an introductory textbook. Boca raton: CRC Press; 2019.
Svoboda, J., 2013 NK cells and their receptors in immune regulation-possible targets for Immunomodulation.
Saunders PM, et al. A bird’s eye view of NK cell receptor interactions with their MHC Class I ligands. Immunol Rev. 2015;267(1):148–66.
Article PubMed CAS Google Scholar
Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol. 2023;23(2):90–105.
Article PubMed CAS Google Scholar
Deng W, Gowen BG, Zhang L, Wang L, Lau S, Iannello A, Xu J, Rovis TL, Xiong N, Raulet DH. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science. 2015;348(6230):136–9.
Article PubMed PubMed Central CAS Google Scholar
Silva DA, Yu S, Ulge UY, Spangler JB, Jude KM, Labão-Almeida C, Ali LR, Quijano-Rubio A, Ruterbusch M, Leung I, Biary T. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565(7738):186–91.
Article PubMed PubMed Central CAS Google Scholar
Bentebibel SE, Hurwitz ME, Bernatchez C, Haymaker C, Hudgens CW, Kluger HM, Tetzlaff MT, Tagliaferri MA, Zalevsky J, Hoch U, Fanton C. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 2019;9(6):711–21.
Article PubMed CAS Google Scholar
Kamiya T, Seow SV, Wong D, Robinson M, Campana D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J Clin Investig. 2019;129(5):2094–106.
Article PubMed PubMed Central Google Scholar
André P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, Bléry M, Bonnafous C, Gauthier L, Morel A, Rossi B. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175(7):1731–43.
Article PubMed PubMed Central Google Scholar
Hahn AW, et al. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy. 2017;9(8):681–92.
Article PubMed CAS Google Scholar
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: update and challenges. Acta Pharmaceutica Sinica B. 2024;14:3818.
Article PubMed PubMed Central CAS Google Scholar
Ramanayake Mudiyanselage TM, Michigami M, Ye Z, Uyeda A, Inoue N, Sugiura K, Fujii I, Fujiwara D. An immune-stimulatory helix–loop–helix peptide: selective inhibition of CTLA-4–B7 interaction. ACS Chem Biol. 2019;15(2):360–8.
Zhou X, Zuo C, Li W, Shi W, Zhou X, Wang H, Chen S, Du J, Chen G, Zhai W, Zhao W. A novel d-peptide identified by mirror-image phage display blocks TIGIT/PVR for cancer immunotherapy. Angew Chem Int Ed. 2020;59(35):15114–8.
Comments (0)