Registration of NADH Photobleaching for Metabolism–Excitation–Contraction Coupling Studies in Layers of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Ravens U. 2018. Sex differences in cardiac electrophysiology. CJPP. 96 (10), 985–990. https://doi.org/10.1139/cjpp-2018-0179

Article  CAS  Google Scholar 

Efimov I.R., Nikolski V.P., Salama G. 2004. Optical imaging of the heart. Circ. Res. 95 (1), 21–33. https://doi.org/10.1161/01.RES.0000130529.18016.35

Article  CAS  PubMed  Google Scholar 

George S.A., Lin Z., Efimov I.R. 2022. Simultaneous triple-parametric optical mapping of transmembrane potential, intracellular calcium and NADH for cardiac physiology assessment. Commun. Biol. 5 (1), 319. https://doi.org/10.1038/s42003-022-03279-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kléber A.G., Rudy Y. 2004. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84 (2), 431–488. https://doi.org/10.1152/physrev.00025.2003

Article  PubMed  Google Scholar 

Balakina-Vikulova N.A., Panfilov A., Solovyova O., Katsnelson L.B. 2020. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model. J. Physiol. Sci. 70, 1–23. https://doi.org/10.1186/s12576-020-00741-6

Article  CAS  Google Scholar 

Solovyova O., Katsnelson L.B., Kohl P., Panfilov A.V., Tsaturyan A.K., Tsyvian P.B. 2016. Mechano-electric heterogeneity of the myocardium as a paradigm of its function. Prog. Biophys. Mol. Biol. 120 (1–3), 249–254. https://doi.org/10.1016/j.pbiomolbio.2015.12.007

Article  PubMed  PubMed Central  Google Scholar 

Jalife J., Gray R.A., Morley G.E., Davidenko J.M. 1998. Self-organization and the dynamical nature of ventricular fibrillation. Chaos. 8 (1), 79–93. https://doi.org/10.1063/1.166289

Article  PubMed  Google Scholar 

Passini E., Britton O.J., Lu H.R., Rohrbacher J., Hermans A.N., Gallacher D.J., Greig R.J.H, Bueno-Orovio A., Rodriguez B. 2017. Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front. Physiol. 8, 668. https://doi.org/10.3389/fphys.2017.00668

Article  PubMed  PubMed Central  Google Scholar 

Kazbanov I. V., Clayton R.H., Nash M.P., Bradley C.P., Paterson D.J., Hayward M.P., Taggart P., Panfilov A.V. 2014. Effect of global cardiac ischemia on human ventricular fibrillation: Insights from a multi-scale mechanistic model of the human heart. PLoS Comput. Biol. 10 (11), e1003891. https://doi.org/10.1371/journal.pcbi.1003891

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piccini J.P., Whellan D.J., Berridge B.R., Finkle J.K., Pettit S.D., Stockbridge N., Valentin J., Vargas H.M., Krucoff M.W., CSRC/HESI Writing Group. 2009. Current challenges in the evaluation of cardiac safety during drug development: Translational medicine meets the Critical Path Initiative. Am. Heart J. 158 (3), 317–326. https://doi.org/10.1016/j.ahj.2009.06.007

Article  PubMed  Google Scholar 

Siramshetty V.B., Nickel J., Omieczynski C., Gohlke B.O., Drwal M. N., Preissner R. 2016. WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucl. Acid-s Res. 44 (D1), D1080–D1086. https://doi.org/10.1093/nar/gkv1192

Article  CAS  Google Scholar 

Podgurskaya A.D., Tsvelaya V.A., Slotvitsky M.M., Dementyeva E.V., Valetdinova K.R., Agladze K.I. 2019. The use of iPSC-derived cardiomyocytes and optical mapping for erythromycin arrhythmogenicity testing. Cardiovas. Toxicol. 19, 518–528. https://doi.org/10.1007/s12012-019-09532-x

Article  CAS  Google Scholar 

Podgurskaya A.D., Slotvitsky M.M., Tsvelaya V.A., Frolova S.R., Romanova S.G., Balashov V.A., Agladze K.I. 2021. Cyclophosphamide arrhythmogenicity testing using human-induced pluripotent stem cell-derived cardiomyocytes. Sci. Rep. 11 (1), 2336. https://doi.org/10.1038/s41598-020-79085-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreno A., Kuzmiak-Glancy S., Jaimes 3rd R., Kay M.W. 2017. Enzyme-dependent fluorescence recovery of NADH after photobleaching to assess dehydrogenase activity of isolated perfused hearts. Sci. Rep. 7 (1), 45744. https://doi.org/10.1038/srep45744

Article  PubMed  PubMed Central  Google Scholar 

Asfour H., Wengrowski A.M., Jaimes 3rd R., Swift L.M., Kay M.W. 2012. NADH fluorescence imaging of isolated biventricular working rabbit hearts. JoVE. (65), 4115. https://doi.org/10.3791/4115

Lian X., Zhang J., Azarin S.M., Zhu K., Hazeltine L.B., Bao X., Hsiao C., Kamp T.J., Palecek S.P. 2013. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Prot. 8 (1), 162–175. https://doi.org/10.1038/nprot.2012.150

Article  CAS  Google Scholar 

Slotvitsky M.M., Tsvelaya V.A., Podgurskaya A.D., Agladze K.I. 2020. Formation of an electrical coupling between differentiating cardiomyocytes. Sci. Rep. 10 (1), 7774. https://doi.org/10.1038/s41598-020-64581-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrasheva V.O., Kovalenko S.G., Slotvitsky M., Romanova S.A., Aitova A.A., Frolova S., Tsvelaya V. Syunyaev R.A. 2024. Human sodium current voltage-dependence at physiological temperature measured by coupling a patch-clamp experiment to a mathematical model. Physiol. J. 602 (4), 633–661. https://doi.org/10.1113/JP285162

Article  CAS  Google Scholar 

Slotvitsky M., Berezhnoy A., Scherbina S., Rimskaya B., Tsvelaya V., Balashov V., Efimov A.E., Agapov I., Agladze K. 2022. Polymer kernels as compact carriers for suspended cardiomyocytes. Micromachines. 14 (1), 51. https://doi.org/10.3390/mi14010051

Article  PubMed  PubMed Central  Google Scholar 

Joubert F., Fales H.M., Wen H., Combs C.A., Balaban R.S. 2004. NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP): Applications to enzyme and mitochondrial reaction kinetics, in vitro. Biophys. J. 86 (1), 629–645. https://doi.org/10.1016/S0006-3495(04)74141-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Combs C.A., Balaban R.S. 2001. Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP). Biophys. J. 80 (4), 2018–2028. https://doi.org/10.1016/S0006-3495(01)76172-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayevsky A. 2015. Mitochondrial function in vivo evaluated by NADH fluorescence (No. 11 463). Heidelberg, New York, Dordrecht, London: Springer International Publishing. https://doi.org/10.1007/978-3-319-16682-7

Kuzmiak-Glancy S., Jaimes 3rd R., Wengrowski A.M., Kay M.W. 2015. Oxygen demand of perfused heart preparations: How electromechanical function and inadequate oxygenation affect physiology and optical measurements. Exper. Physiol. 100 (6), 603–616. https://doi.org/10.1113/EP085042

Article  CAS  Google Scholar 

George S.A., Efimov I.R. 2019. Optocardiography: A review of its past, present, and future. Cur. Op. Biomed. Eng. 9, 74–80. https://doi.org/10.1016/j.cobme.2019.03.001

Article  Google Scholar 

Salama G., Morad M. 1976. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science. 191 (4226), 485–487. https://doi.org/10.1126/science.191.4226.485

Article  CAS  PubMed  Google Scholar 

Barlow C.H., Chance B. 1976. Ischemic areas in perfused rat hearts: Measurement by NADH fluorescence photography. Science. 193 (4256), 909–910. https://doi.org/10.1126/science.181843

Article  CAS  PubMed  Google Scholar 

Feric N.T., Radisic M. 2016. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110–134. https://doi.org/10.1016/j.addr.2015.04.019

Article  CAS  PubMed  Google Scholar 

Sager P.T., Gintant G., Turner J.R., Pettit S., Stockbridge N. 2014. Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. Am. Heart J. 167 (3), 292–300. https://doi.org/10.1016/j.ahj.2013.11.004

Article  PubMed  Google Scholar 

Comments (0)

No login
gif