Ravens U. 2018. Sex differences in cardiac electrophysiology. CJPP. 96 (10), 985–990. https://doi.org/10.1139/cjpp-2018-0179
Efimov I.R., Nikolski V.P., Salama G. 2004. Optical imaging of the heart. Circ. Res. 95 (1), 21–33. https://doi.org/10.1161/01.RES.0000130529.18016.35
Article CAS PubMed Google Scholar
George S.A., Lin Z., Efimov I.R. 2022. Simultaneous triple-parametric optical mapping of transmembrane potential, intracellular calcium and NADH for cardiac physiology assessment. Commun. Biol. 5 (1), 319. https://doi.org/10.1038/s42003-022-03279-y
Article CAS PubMed PubMed Central Google Scholar
Kléber A.G., Rudy Y. 2004. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84 (2), 431–488. https://doi.org/10.1152/physrev.00025.2003
Balakina-Vikulova N.A., Panfilov A., Solovyova O., Katsnelson L.B. 2020. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model. J. Physiol. Sci. 70, 1–23. https://doi.org/10.1186/s12576-020-00741-6
Solovyova O., Katsnelson L.B., Kohl P., Panfilov A.V., Tsaturyan A.K., Tsyvian P.B. 2016. Mechano-electric heterogeneity of the myocardium as a paradigm of its function. Prog. Biophys. Mol. Biol. 120 (1–3), 249–254. https://doi.org/10.1016/j.pbiomolbio.2015.12.007
Article PubMed PubMed Central Google Scholar
Jalife J., Gray R.A., Morley G.E., Davidenko J.M. 1998. Self-organization and the dynamical nature of ventricular fibrillation. Chaos. 8 (1), 79–93. https://doi.org/10.1063/1.166289
Passini E., Britton O.J., Lu H.R., Rohrbacher J., Hermans A.N., Gallacher D.J., Greig R.J.H, Bueno-Orovio A., Rodriguez B. 2017. Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front. Physiol. 8, 668. https://doi.org/10.3389/fphys.2017.00668
Article PubMed PubMed Central Google Scholar
Kazbanov I. V., Clayton R.H., Nash M.P., Bradley C.P., Paterson D.J., Hayward M.P., Taggart P., Panfilov A.V. 2014. Effect of global cardiac ischemia on human ventricular fibrillation: Insights from a multi-scale mechanistic model of the human heart. PLoS Comput. Biol. 10 (11), e1003891. https://doi.org/10.1371/journal.pcbi.1003891
Article CAS PubMed PubMed Central Google Scholar
Piccini J.P., Whellan D.J., Berridge B.R., Finkle J.K., Pettit S.D., Stockbridge N., Valentin J., Vargas H.M., Krucoff M.W., CSRC/HESI Writing Group. 2009. Current challenges in the evaluation of cardiac safety during drug development: Translational medicine meets the Critical Path Initiative. Am. Heart J. 158 (3), 317–326. https://doi.org/10.1016/j.ahj.2009.06.007
Siramshetty V.B., Nickel J., Omieczynski C., Gohlke B.O., Drwal M. N., Preissner R. 2016. WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucl. Acid-s Res. 44 (D1), D1080–D1086. https://doi.org/10.1093/nar/gkv1192
Podgurskaya A.D., Tsvelaya V.A., Slotvitsky M.M., Dementyeva E.V., Valetdinova K.R., Agladze K.I. 2019. The use of iPSC-derived cardiomyocytes and optical mapping for erythromycin arrhythmogenicity testing. Cardiovas. Toxicol. 19, 518–528. https://doi.org/10.1007/s12012-019-09532-x
Podgurskaya A.D., Slotvitsky M.M., Tsvelaya V.A., Frolova S.R., Romanova S.G., Balashov V.A., Agladze K.I. 2021. Cyclophosphamide arrhythmogenicity testing using human-induced pluripotent stem cell-derived cardiomyocytes. Sci. Rep. 11 (1), 2336. https://doi.org/10.1038/s41598-020-79085-5
Article CAS PubMed PubMed Central Google Scholar
Moreno A., Kuzmiak-Glancy S., Jaimes 3rd R., Kay M.W. 2017. Enzyme-dependent fluorescence recovery of NADH after photobleaching to assess dehydrogenase activity of isolated perfused hearts. Sci. Rep. 7 (1), 45744. https://doi.org/10.1038/srep45744
Article PubMed PubMed Central Google Scholar
Asfour H., Wengrowski A.M., Jaimes 3rd R., Swift L.M., Kay M.W. 2012. NADH fluorescence imaging of isolated biventricular working rabbit hearts. JoVE. (65), 4115. https://doi.org/10.3791/4115
Lian X., Zhang J., Azarin S.M., Zhu K., Hazeltine L.B., Bao X., Hsiao C., Kamp T.J., Palecek S.P. 2013. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Prot. 8 (1), 162–175. https://doi.org/10.1038/nprot.2012.150
Slotvitsky M.M., Tsvelaya V.A., Podgurskaya A.D., Agladze K.I. 2020. Formation of an electrical coupling between differentiating cardiomyocytes. Sci. Rep. 10 (1), 7774. https://doi.org/10.1038/s41598-020-64581-5
Article CAS PubMed PubMed Central Google Scholar
Abrasheva V.O., Kovalenko S.G., Slotvitsky M., Romanova S.A., Aitova A.A., Frolova S., Tsvelaya V. Syunyaev R.A. 2024. Human sodium current voltage-dependence at physiological temperature measured by coupling a patch-clamp experiment to a mathematical model. Physiol. J. 602 (4), 633–661. https://doi.org/10.1113/JP285162
Slotvitsky M., Berezhnoy A., Scherbina S., Rimskaya B., Tsvelaya V., Balashov V., Efimov A.E., Agapov I., Agladze K. 2022. Polymer kernels as compact carriers for suspended cardiomyocytes. Micromachines. 14 (1), 51. https://doi.org/10.3390/mi14010051
Article PubMed PubMed Central Google Scholar
Joubert F., Fales H.M., Wen H., Combs C.A., Balaban R.S. 2004. NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP): Applications to enzyme and mitochondrial reaction kinetics, in vitro. Biophys. J. 86 (1), 629–645. https://doi.org/10.1016/S0006-3495(04)74141-7
Article CAS PubMed PubMed Central Google Scholar
Combs C.A., Balaban R.S. 2001. Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP). Biophys. J. 80 (4), 2018–2028. https://doi.org/10.1016/S0006-3495(01)76172-3
Article CAS PubMed PubMed Central Google Scholar
Mayevsky A. 2015. Mitochondrial function in vivo evaluated by NADH fluorescence (No. 11 463). Heidelberg, New York, Dordrecht, London: Springer International Publishing. https://doi.org/10.1007/978-3-319-16682-7
Kuzmiak-Glancy S., Jaimes 3rd R., Wengrowski A.M., Kay M.W. 2015. Oxygen demand of perfused heart preparations: How electromechanical function and inadequate oxygenation affect physiology and optical measurements. Exper. Physiol. 100 (6), 603–616. https://doi.org/10.1113/EP085042
George S.A., Efimov I.R. 2019. Optocardiography: A review of its past, present, and future. Cur. Op. Biomed. Eng. 9, 74–80. https://doi.org/10.1016/j.cobme.2019.03.001
Salama G., Morad M. 1976. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science. 191 (4226), 485–487. https://doi.org/10.1126/science.191.4226.485
Article CAS PubMed Google Scholar
Barlow C.H., Chance B. 1976. Ischemic areas in perfused rat hearts: Measurement by NADH fluorescence photography. Science. 193 (4256), 909–910. https://doi.org/10.1126/science.181843
Article CAS PubMed Google Scholar
Feric N.T., Radisic M. 2016. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110–134. https://doi.org/10.1016/j.addr.2015.04.019
Article CAS PubMed Google Scholar
Sager P.T., Gintant G., Turner J.R., Pettit S., Stockbridge N. 2014. Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. Am. Heart J. 167 (3), 292–300. https://doi.org/10.1016/j.ahj.2013.11.004
Comments (0)