Kovalchuk M.V., Blagov A. E., Dyakova Yu. A., Gruzinov A. Yu., Marchenkova M. A., Peters G. S., Pisarevsky Yu. V., Timofeev V. I., Volkov V. V. 2016. Investigation of the initial crystallization stage in lysozyme solutions by small-angle X-ray scattering. Cryst. Growth Des. 16 (4), 1792–1797. https://doi.org/10.1021/acs.cgd.5b01662
Korasick D. A., Tanner J. J. 2018. Determination of protein oligomeric structure from small-angle X-ray scattering. Protein Sci. 27 (4), 814–824. https://doi.org/10.1002/pro.3376
Article CAS PubMed PubMed Central Google Scholar
Korasick D. A., Singh H., Pemberton T. A., Luo M., Dhatwalia R., Tanner J. J. 2017. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure, FEBS J. 284 (18), 3029–3049. https://doi.org/10.1111/febs.14165
Article CAS PubMed PubMed Central Google Scholar
Oda T., Aihara T., Wakabayashi K. 2016. Early nucleation events in the polymerization of actin, probed by time-resolved small-angle x-ray scattering. Sci. Rep. 6 (1), 34539. https://doi.org/10.1038/srep34539
Article CAS PubMed PubMed Central Google Scholar
Sudarev V.V., Dolotova S.M., Bukhalovich S.M., et al. 2023. Ferritin self-assembly, structure, function, and biotechnological applications. Int. J. Biol. Macromol. 224, 319–343. https://doi.org/10.1016/j.ijbiomac.2022.10.126
Article CAS PubMed Google Scholar
Richter G.W., Walker G.F. 1967. Reversible association of apoferritin molecules. Comparison of light-scattering and other data. Biochemistry. 6 (9), 2871–2881. https://doi.org/10.1021/bi00861a031
Article CAS PubMed Google Scholar
Williams M.A., Harrison P.M. 1968. Electron-microscopic and chemical studies of oligomers in horse ferritin. Biochem. J. 110 (2), 265–280. https://doi.org/10.1042/bj1100265
Article CAS PubMed PubMed Central Google Scholar
BjÖRK I. 1973. Association-dissociation behaviour and hydrodynamic properties of apoferritin monomer and dimer. Eur. J. Biochem. 36 (1), 178–184. https://doi.org/10.1111/j.1432-1033.1973.tb02899.x
Niitsu Y., Listowsky I. 1973. Mechanisms for the formation of ferritin oligomers. Biochemistry. 12 (23), 4690–4695. https://doi.org/10.1021/bi00747a023
Article CAS PubMed Google Scholar
Lee S.S.C., Richter G.W. 1976. The monomers and oligomers of ferritin and apoferritin: Association and dissociation, Biochemistry. 15 (1), 65–70. https://doi.org/10.1021/bi00646a011
Article CAS PubMed Google Scholar
Singh B. P., Bohidar H. B., Chopra S. 1991. Heat aggregation studies of phycobilisomes, ferritin, insulin, and immunoglobulin by dynamic light scattering. Biopolymers. 31 (12), 1387–1396. https://doi.org/10.1002/bip.360311205
Article CAS PubMed Google Scholar
Yang D., Matsubara K., Yamaki M., Ebina S., Nagayama K. 1994. Heterogeneities in ferritin dimers as characterized by gel filtration, nuclear magnetic resonance, electrophoresis, transmission electron microscopy, and gene engineering techniques. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1206 (2), 173–179. https://doi.org/10.1016/0167-4838(94)90205-4
Petsev D.N., Thomas B.R., Yau S.-T., Vekilov P.G. 2000. Interactions and aggregation of apoferritin molecules in solution: Effects of added electrolytes, Biophys. J. 78 (4), 2060–2069. https://doi.org/10.1016/S0006-3495(00)76753-1
Article CAS PubMed PubMed Central Google Scholar
Zabelskii D. V., Vlasov A. V., Ryzhykau Y. L., Murugova T. N., et al. 2018. Ambiguities and completeness of SAS data analysis: investigations of apoferritin by SAXS/SANS EID and SEC-SAXS methods. J. Phys. Conf. Ser. 994 (1), 012017. https://doi.org/10.1088/1742-6596/994/1/012017
Graewert M.A., Da Vela S., Gräwert T.W., Molodenskiy D.S., Blanchet C.E., Svergun D.I., Jeffries C.M. 2020. Adding size exclusion chromatography (SEC) and light scattering (LS) devices to obtain high-quality small angle X-ray scattering (SAXS) data. Crystals. 10 (11), 975. https://doi.org/10.3390/cryst10110975
Bucciarelli S., Midtgaard S.R., Nors Pedersen M., Skou S., Arleth L., Vestergaard B. 2018. Size-exclusion chromatography small-angle X-ray scattering of water-soluble proteins on a laboratory instrument. J. Appl. Crystallogr. 51 (6), 1623–1632. https://doi.org/10.1107/S1600576718014462
Article CAS PubMed PubMed Central Google Scholar
Blanchet C.E., Round A., Mertens H.D.T., Ayyer K., et al. 2023. Form factor determination of biological molecules with X-ray free electron laser small-angle scattering (XFEL-SAS). Commun. Biol. 6 (1), 1057. https://doi.org/10.1038/s42003-023-05416-7
Article CAS PubMed PubMed Central Google Scholar
Brennich M. E., Kieffer J., Bonamis G., De Maria Antolinos A., Hutin S., Pernot P., Round A. 2016. Online data analysis at the ESRF bioSAXS beamline, BM29. J. Appl. Crystallogr. 49 (1), 203–212. https://doi.org/10.1107/S1600576715024462
Hopkins J. B., Gillilan R. E., Skou S. 2017. BioXTAS RAW: Improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis, J. Appl. Crystallogr. 50 (5), 1545–1553. https://doi.org/10.1107/S1600576717011438
Article CAS PubMed PubMed Central Google Scholar
Svergun D.I. 1992. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25 (4), 495–503. https://doi.org/10.1107/S0021889892001663
Hajizadeh N.R., Franke D., Jeffries C.M., Svergun D.I. 2018. Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data. Sci. Rep. 8, 7204. https://doi.org/10.1038/s41598-018-25355-2
Article CAS PubMed PubMed Central Google Scholar
Harris C.R., Millman K.J., van der Walt S.J., Gommers R., et al. 2020. Array programming with NumPy. Nature. 585 (7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Article CAS PubMed PubMed Central Google Scholar
Virtanen P., Gommers R., Oliphant T.E., Haberland M., et al. 2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
Article CAS PubMed PubMed Central Google Scholar
Hunter J.D. 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9 (3), 90–95. https://doi.org/10.1109/MCSE.2007.55
McKinney W. 2010. Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference, p. 56–61. https://doi.org/10.25080/Majora-92bf1922-00a
The pandas development team. 2020. pandas-dev/pandas: Pandas (v1.5.3) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7549438
Buitinck L., Louppe G., Blondel M., Pedregosa F., et al. 2013. API design for machine learning software: Experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238. https://doi.org/10.48550/arXiv.1309.0238
Svergun D.I., Feigin L.A. 1986. Rentgenovskoe i neitronnoe malouglovoe rasseyanie (Small angle X-ray and neutron scattering. Moscow: Nauka) [Translated into English (Structure analysis by small-angle X-ray and neutron scattering. New York: Plenum Press, 1987)].
Yau S.T., Vekilov P.G. 2000. Quasi-planar nucleus structure in apoferritin crystallization. Nature. 406 (6795), 494–497. https://doi.org/10.1038/35020035
Comments (0)