Ernst O.P., Lodowski D.T., Elstner M., Hegemann P., Brown L.S., Kandori H. 2014. Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem. Rev. 114 (1), 126–163. https://doi.org/10.1021/cr4003769
Article CAS PubMed Google Scholar
Zhang H., Fang H., Liu D., Zhang Y., Adu-Amankwaah J., Yuan J., Tan R., Zhu J. 2022. Applications and challenges of rhodopsin-based optogenetics in biomedicine. Front. Neurosci. 16, 966772. https://doi.org/10.3389/fnins.2022.966772
Article PubMed PubMed Central Google Scholar
Grünbein M.L., Kovacs G.N., Kloos M., Gorel A., Doak R.B., Shoeman R.L., Barends T.R.M., Schlichting I. 2022. Crystallographic studies of rhodopsins: Structure and dynamics. Meth. Mol. Biol. (Clifton, N.J.). 2501, 147–168. https://doi.org/10.1007/978-1-0716-2329-9_7
Stoeckenius W., Rowen R. 1967. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J. Cell Biol. 34 (1), 365–393. https://doi.org/10.1083/jcb.34.1.365
Article CAS PubMed PubMed Central Google Scholar
Borshchevskiy V., Kovalev K., Round E., et al. 2022. True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins. Nat. Struct. Mol. Biol. 29 (5), 440–450. https://doi.org/10.1038/s41594-022-00762-2
Article CAS PubMed Google Scholar
Henderson R., Baldwin J.M., Ceska T.A., Zemlin F., Beckmann E., Downing K.H. 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213 (4), 899–929. https://doi.org/10.1016/S0022-2836(05)80271-2
Article CAS PubMed Google Scholar
Oesterhelt D., Stoeckenius W. 1974. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Meth. Enzymol. 31, 667–678. https://doi.org/10.1016/0076-6879(74)31072-5
Kuklina D.D., Shishkin A.Y., Bezruchko I.O., Kalenov S.V., Okhrimenko I.S., Dronova E.A., Mikhailov A.E., Ryzhykau Y.L. 2024. Cultivation of halophilic archaea Halobacterium salinarum. Phys. Partic. Nucl. Lett. 21 (4), 819–822. https://doi.org/10.1134/S1547477124701449
Weinert T., Skopintsev P., James D., Dworkowski F., Panepucci E., Kekilli D., Furrer A., Brünle S., Mous S., Ozerov D., Nogly P., Wang M., Standfuss J. 2019. Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science. 365 (6448), 61–65. https://doi.org/10.1126/science.aaw8634
Article CAS PubMed Google Scholar
Li N., Li X., Wang Y., Liu G., Zhou P., Wu H., Hong C., Bian F., Zhang R. 2016. The new NCPSS BL19U2 beamline at the SSRF for small-angle X-ray scattering from biological macromolecules in solution. J. Appl. Crystallogr. 49 (5), 1428–1432. https://doi.org/10.1107/S160057671601195X
Article CAS PubMed PubMed Central Google Scholar
Li Y.W., Liu G.F., Wu H.J., Zhou P., Hong C.X., Li N., Bian F.G. 2020. BL19U2: Small-angle X-ray scattering beamline for biological macromolecules in solution at SSRF. Nucl. Sci. Techniques. 31 (12), 17. https://doi.org/10.1007/s41365-020-00825-3
Hopkins J.B. 2024. BioXTAS RAW 2: New developments for a free open-source program for small-angle scattering data reduction and analysis. J. Appl. Crystallogr. 57 (1), 194–208. https://doi.org/10.1107/S1600576723011019
Article CAS PubMed PubMed Central Google Scholar
Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R., Kikhney A.G., Petoukhov M.V., Molodenskiy D.S., Panjkovich A., Mertens H.D.T., Gruzinov A., Borges C., Jeffries C.M., Svergun D.I., Franke D. 2021. ATSAS 3.0: Expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 54 (1), 343–355. https://doi.org/10.1107/S1600576720013412
Article CAS PubMed PubMed Central Google Scholar
Misra S., Govindjee R., Ebrey T.G., Chen N., Ma J.X., Crouch R.K. 1997. Proton uptake and release are rate-limiting steps in the photocycle of the bacteriorhodopsin mutant E204Q. Biochemistry. 36 (16), 4875–4883. https://doi.org/10.1021/bi962673t
Article CAS PubMed Google Scholar
De Pol F., Baranowski M., Neumann C., Trampari S., Nissen P., Pérez J. 2024. Simulation and modelling of the detergent corona around the membrane protein MhsT based on SAXS data. Appl. Crystallogr. 57 (5), 1415–1425. https://doi.org/10.1107/S1600576724006721
Ryzhykau Y.L., Vlasov A.V., Orekhov P.S., Rulev M.I., Rogachev A.V., Vlasova A.D., Kazantsev A.S., Verteletskiy D.P., Skoi V.V., Brennich M.E., Pernot P., Murugova T.N., Gordeliy V.I., Kuklin A.I. 2021. Ambiguities in and completeness of SAS data analysis of membrane proteins: The case of the sensory rhodopsin II–transducer complex. Acta Crystallographica Sect. D: Struct. Biol. 77 (11), 1386–1400. https://doi.org/10.1107/S2059798321009542
Ritchie T.K., Grinkova Y.V., Bayburt T.H., Denisov I.G., Zolnerciks J.K., Atkins W.M., Sligar S.G. 2009. Chapter 11. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Meth. Enzymol. 464, 211–231. https://doi.org/10.1016/S0076-6879(09)64011-8
Orekhov P.S., Bozdaganyan M.E., Voskoboynikova N., Mulkidjanian A.Y., Karlova M.G., Yudenko A., Remeeva A., Ryzhykau Y.L., Gushchin I., Gordeliy V.I., Sokolova O.S., Steinhoff H.-J., Kirpichnikov M.P., Shaitan K.V. 2022. Mechanisms of formation, structure, and dynamics of lipoprotein discs stabilized by amphiphilic copolymers: A comprehensive review. Nanomaterials. 12 (3), 361. https://doi.org/10.3390/nano12030361
Article CAS PubMed PubMed Central Google Scholar
Murugova T.N., Ivankov O.I., Ryzhykau Y.L., et al. 2022. Mechanisms of membrane protein crystallization in ‘bicelles’. Sci. Rep. 12 (1), 11109. https://doi.org/10.1038/s41598-022-13945-0
Article CAS PubMed PubMed Central Google Scholar
Ryzhykau Y.L., Orekhov P.S., Rulev M.I., et al. 2021. Molecular model of a sensor of two-component signaling system. Sci. Rep. 11 (1), 10774. https://doi.org/10.1038/s41598-021-89613-6
Article CAS PubMed PubMed Central Google Scholar
Volkov O., Kovalev K., Polovinkin V., Borshchevskiy V., Bamann C., Astashkin R., Marin E., Popov A., Balandin T., Willbold D., Büldt G., Bamberg E., Gordeliy V. 2017. Structural insights into ion conduction by channelrhodopsin 2. Science. 358 (6366), eaan8862. https://doi.org/10.1126/science.aan8862
Comments (0)