Conrad K.S., Manahan C.C., Crane B.R. 2014. Photochemistry of flavoprotein light sensors. Nature Chem. Biol. 10 (10), 801–809. https://doi.org/10.1038/nchembio.1633
Losi A., Mandalari C., Gärtner W. 2014. From plant infectivity to growth patterns: The role of blue-light sensing in the prokaryotic world. Plants. 3 (1), 70–94. https://doi.org/10.3390/plants3010070
Article CAS PubMed PubMed Central Google Scholar
Shcherbakova D.M., Shemetov A.A., Kaberniuk A.A., Verkhusha V.V. 2015. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Ann. Rev. Biochem. 84 (1), 519–550. https://doi.org/10.1146/annurev-biochem-060614-034411
Article CAS PubMed Google Scholar
Smolentseva A., Goncharov I.M., Yudenko A., et al. 2021. Extreme dependence of Chloroflexus aggregans LOV domain thermo-and photostability on the bound flavin species. Photochem. Photobiol. Sci. 20, 1645–1656. https://doi.org/10.1007/s43630-021-00138-3
Article CAS PubMed Google Scholar
Glantz S.T., Carpenter E.J., Melkonian M., Gardner K.H., Boyden E.S., Wong G.K.S., Chow B.Y. 2016. Functional and topological diversity of LOV domain photoreceptors. Proc. Natl. Acad. Sci. USA. 113 (11), E1442–E1451. https://doi.org/10.1073/pnas.1509428113
Article CAS PubMed PubMed Central Google Scholar
Christie J.M. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58 (1), 21–45. https://doi.org/10.1146/annurev.arplant.58.032806.103951
Article CAS PubMed Google Scholar
Zhang H., Xiong X., Guo K., et al. 2024. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light. Nature Comm. 15 (1), 5578. https://doi.org/10.1038/s41467-024-49991-7
Chen H., Li K., Cai Y., Wang P., Gong W., Wu L.F., Song T. 2020. Light regulation of resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum mediated by a Cys-less LOV-like protein. Appl. Microbiol. Biotechnol. 104, 7927–7941. https://doi.org/10.1007/s00253-020-10807-5
Article CAS PubMed Google Scholar
Khanh N.V., Lee Y.H. 2024. LOV1 protein of Pseudomonas cichorii JBC1 modulates its virulence and lifestyles in response to blue light. Sci. Rep. 14 (1), 15672. https://doi.org/10.1038/s41598-024-66422-1
Article CAS PubMed PubMed Central Google Scholar
Sha N., Xu S., Wan B., Zhao K.H. 2024. Light-oxygen-voltage (LOV) domain-derived photosensitizers with the highest quantum yield for superoxide anion or singlet oxygen. J. Photochem. Photobiol. A: Chemistry. 452, 115591. https://doi.org/10.1016/j.jphotochem.2024.115591
Schleicher E., Kowalczyk R.M., Kay C.W., et al. 2004. On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. J. Amer. Chem. Soc. 126 (35), 11067–11076. https://doi.org/10.1021/ja049553q
Dietler J., Gelfert R., Kaiser J., et al. 2022. Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine. Nature Comm. 13 (1), 2618. https://doi.org/10.1038/s41467-022-30252-4
Alexandre M.T., Arents J.C., van Grondelle R., Hellingwerf K.J., Kennis J.T. 2007. A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain. Biochem. 46 (11), 3129–3137. https://doi.org/10.1021/bi062074e
Yee E.F., Diensthuber R.P., Vaidya A.T., et al. 2015. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue. Nature Comm. 6 (1), 10079. https://doi.org/10.1038/ncomms10079
Valle L., Coronel Y.J., Bravo G.E., Albarracín V.H., Farias M.E., Abatedaga I. 2023. Archaeal LOV domains from lake Diamante: First functional characterization of a halo-adapted photoreceptor. https://doi.org/10.21203/rs.3.rs-3073767/v1
Sorokin D.Y., Kublanov I.V., Gavrilov S.N., et al. (2016). Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J. 10 (1), 240–252. https://doi.org/10.1038/ismej.2015.79
Article CAS PubMed Google Scholar
Messina E., Sorokin D.Y., Kublanov I.V., et al. 2016. Complete genome sequence of ‘Halanaeroarchaeum sulfurireducens’ M27-SA2, a sulfur-reducing and acetate-oxidizing haloarchaeon from the deep-sea hypersaline anoxic lake Medee. Stand. Genomic Sci. 11, 1–15. https://doi.org/10.1186/s40793-016-0155-9
Soppa J., Baumann A., Brenneis M., Dambeck M., Hering O., Lange C. 2008. Genomics and functional genomics with haloarchaea. Arch. Microbiol. 190, 197–215. https://doi.org/10.1007/s00203-008-0376-4
Article CAS PubMed Google Scholar
Remeeva A., Yudenko A., Nazarenko V.V., at al. 2022. Development and characterization of flavin-binding fluorescent proteins, part I: Basic characterization. In: Fluorescent Proteins: Methods and Protocols. Ed. Walker J.M. New York: Springer US, New York, p. 121–141.
Nazarenko V.V., Remeeva A., Yudenko A., et al. 2019. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: A framework for ultra-high resolution structural studies. Photochem. Photobiol. Sci. 18, 1793–1805. https://doi.org/10.1039/c9pp00067d
Article CAS PubMed Google Scholar
Goncharov I.M., Smolentseva A., Semenov O., et al. 2021. High-resolution structure of a naturally red-shifted LOV domain. Biochem. Biophys. Res. Com. 567, 143–147. https://doi.org/10.1016/j.bbrc.2021.06.046
Article CAS PubMed Google Scholar
Kopka B., Magerl K., Savitsky A., et al. 2017. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci. Rep. 7 (1), 13346. https://doi.org/10.1038/s41598-017-13420-1
Article CAS PubMed PubMed Central Google Scholar
Losi A., Gardner K.H., Möglich A. 2018. Blue-light receptors for optogenetics. Chem. Rev. 118 (21), 10659–10709. https://doi.org/10.1021/acs.chemrev.8b00163
Article CAS PubMed PubMed Central Google Scholar
Buckley A.M., Petersen J., Roe A.J., Douce G.R., Christie J.M. 2015. LOV-based reporters for fluorescence imaging. Curr. Opin. Chem. Biol. 27, 39–45. https://doi.org/10.1016/j.cbpa.2015.05.011
Article CAS PubMed Google Scholar
Mukherjee A., Schroeder C.M. 2015. Flavin-based fluorescent proteins: Emerging paradigms in biological imaging. Curr. Opin. Biotechnol. 31, 16–23. https://doi.org/10.1016/j.copbio.2014.07.010
Article CAS PubMed Google Scholar
Keradjopoulos D., Holldorf A.W. 1977. Thermophilic character of enzymes from extreme halophilic bacteria. FEMS Microbiol. Lett. 1 (3), 179–182. https://doi.org/10.1111/j.1574-6968.1977.tb00609.x
Comments (0)