Expression and Purification of an Archaeal Cysteine-less LOV Domain

Conrad K.S., Manahan C.C., Crane B.R. 2014. Photochemistry of flavoprotein light sensors. Nature Chem. Biol. 10 (10), 801–809. https://doi.org/10.1038/nchembio.1633

Article  CAS  Google Scholar 

Losi A., Mandalari C., Gärtner W. 2014. From plant infectivity to growth patterns: The role of blue-light sensing in the prokaryotic world. Plants. 3 (1), 70–94. https://doi.org/10.3390/plants3010070

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shcherbakova D.M., Shemetov A.A., Kaberniuk A.A., Verkhusha V.V. 2015. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Ann. Rev. Biochem. 84 (1), 519–550. https://doi.org/10.1146/annurev-biochem-060614-034411

Article  CAS  PubMed  Google Scholar 

Smolentseva A., Goncharov I.M., Yudenko A., et al. 2021. Extreme dependence of Chloroflexus aggregans LOV domain thermo-and photostability on the bound flavin species. Photochem. Photobiol. Sci. 20, 1645–1656. https://doi.org/10.1007/s43630-021-00138-3

Article  CAS  PubMed  Google Scholar 

Glantz S.T., Carpenter E.J., Melkonian M., Gardner K.H., Boyden E.S., Wong G.K.S., Chow B.Y. 2016. Functional and topological diversity of LOV domain photoreceptors. Proc. Natl. Acad. Sci. USA. 113 (11), E1442–E1451. https://doi.org/10.1073/pnas.1509428113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christie J.M. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58 (1), 21–45. https://doi.org/10.1146/annurev.arplant.58.032806.103951

Article  CAS  PubMed  Google Scholar 

Zhang H., Xiong X., Guo K., et al. 2024. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light. Nature Comm. 15 (1), 5578. https://doi.org/10.1038/s41467-024-49991-7

Article  CAS  Google Scholar 

Chen H., Li K., Cai Y., Wang P., Gong W., Wu L.F., Song T. 2020. Light regulation of resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum mediated by a Cys-less LOV-like protein. Appl. Microbiol. Biotechnol. 104, 7927–7941. https://doi.org/10.1007/s00253-020-10807-5

Article  CAS  PubMed  Google Scholar 

Khanh N.V., Lee Y.H. 2024. LOV1 protein of Pseudomonas cichorii JBC1 modulates its virulence and lifestyles in response to blue light. Sci. Rep. 14 (1), 15672. https://doi.org/10.1038/s41598-024-66422-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sha N., Xu S., Wan B., Zhao K.H. 2024. Light-oxygen-voltage (LOV) domain-derived photosensitizers with the highest quantum yield for superoxide anion or singlet oxygen. J. Photochem. Photobiol. A: Chemistry. 452, 115591. https://doi.org/10.1016/j.jphotochem.2024.115591

Article  CAS  Google Scholar 

Schleicher E., Kowalczyk R.M., Kay C.W., et al. 2004. On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. J. Amer. Chem. Soc. 126 (35), 11067–11076. https://doi.org/10.1021/ja049553q

Article  CAS  Google Scholar 

Dietler J., Gelfert R., Kaiser J., et al. 2022. Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine. Nature Comm. 13 (1), 2618. https://doi.org/10.1038/s41467-022-30252-4

Article  CAS  Google Scholar 

Alexandre M.T., Arents J.C., van Grondelle R., Hellingwerf K.J., Kennis J.T. 2007. A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain. Biochem. 46 (11), 3129–3137. https://doi.org/10.1021/bi062074e

Article  CAS  Google Scholar 

Yee E.F., Diensthuber R.P., Vaidya A.T., et al. 2015. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue. Nature Comm. 6 (1), 10079. https://doi.org/10.1038/ncomms10079

Article  CAS  Google Scholar 

Valle L., Coronel Y.J., Bravo G.E., Albarracín V.H., Farias M.E., Abatedaga I. 2023. Archaeal LOV domains from lake Diamante: First functional characterization of a halo-adapted photoreceptor. https://doi.org/10.21203/rs.3.rs-3073767/v1

Sorokin D.Y., Kublanov I.V., Gavrilov S.N., et al. (2016). Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J. 10 (1), 240–252. https://doi.org/10.1038/ismej.2015.79

Article  CAS  PubMed  Google Scholar 

Messina E., Sorokin D.Y., Kublanov I.V., et al. 2016. Complete genome sequence of ‘Halanaeroarchaeum sulfurireducens’ M27-SA2, a sulfur-reducing and acetate-oxidizing haloarchaeon from the deep-sea hypersaline anoxic lake Medee. Stand. Genomic Sci. 11, 1–15. https://doi.org/10.1186/s40793-016-0155-9

Article  CAS  Google Scholar 

Soppa J., Baumann A., Brenneis M., Dambeck M., Hering O., Lange C. 2008. Genomics and functional genomics with haloarchaea. Arch. Microbiol. 190, 197–215. https://doi.org/10.1007/s00203-008-0376-4

Article  CAS  PubMed  Google Scholar 

Remeeva A., Yudenko A., Nazarenko V.V., at al. 2022. Development and characterization of flavin-binding fluorescent proteins, part I: Basic characterization. In: Fluorescent Proteins: Methods and Protocols. Ed. Walker J.M. New York: Springer US, New York, p. 121–141.

Nazarenko V.V., Remeeva A., Yudenko A., et al. 2019. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: A framework for ultra-high resolution structural studies. Photochem. Photobiol. Sci. 18, 1793–1805. https://doi.org/10.1039/c9pp00067d

Article  CAS  PubMed  Google Scholar 

Goncharov I.M., Smolentseva A., Semenov O., et al. 2021. High-resolution structure of a naturally red-shifted LOV domain. Biochem. Biophys. Res. Com. 567, 143–147. https://doi.org/10.1016/j.bbrc.2021.06.046

Article  CAS  PubMed  Google Scholar 

Kopka B., Magerl K., Savitsky A., et al. 2017. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci. Rep. 7 (1), 13346. https://doi.org/10.1038/s41598-017-13420-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Losi A., Gardner K.H., Möglich A. 2018. Blue-light receptors for optogenetics. Chem. Rev. 118 (21), 10659–10709. https://doi.org/10.1021/acs.chemrev.8b00163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buckley A.M., Petersen J., Roe A.J., Douce G.R., Christie J.M. 2015. LOV-based reporters for fluorescence imaging. Curr. Opin. Chem. Biol. 27, 39–45. https://doi.org/10.1016/j.cbpa.2015.05.011

Article  CAS  PubMed  Google Scholar 

Mukherjee A., Schroeder C.M. 2015. Flavin-based fluorescent proteins: Emerging paradigms in biological imaging. Curr. Opin. Biotechnol. 31, 16–23. https://doi.org/10.1016/j.copbio.2014.07.010

Article  CAS  PubMed  Google Scholar 

Keradjopoulos D., Holldorf A.W. 1977. Thermophilic character of enzymes from extreme halophilic bacteria. FEMS Microbiol. Lett. 1 (3), 179–182. https://doi.org/10.1111/j.1574-6968.1977.tb00609.x

Article  CAS  Google Scholar 

Comments (0)

No login
gif