Investigating Dual Modulatory Role of Mallotoxin on KCNQ1–KCNE Complexes Using Molecular Modeling

Larsen A.P., Steffensen A.B., Grunnet M., Olesen S.-P. 2011. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state. Biophys. J. 101, 818–827. https://doi.org/10.1016/j.bpj.2011.06.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah N.H., Aizenman E. 2014. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl. Stroke Res. 5, 38–58. https://doi.org/10.1007/s12975-013-0297-7

Article  CAS  PubMed  Google Scholar 

Willegems K., Eldstrom J., Kyriakis E., Ataei F., Sahakyan H., Dou Y., Russo S., Van Petegem F., Fedida D. 2022. Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat. Commun. 13 (1), 3760. https://doi.org/10.1038/s41467-022-31526-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandala V.S., MacKinnon R. 2023. The membrane electric field regulates the PIP2-binding site to gate the KCNQ1 channel. Proc. Natl. Acad. Sci. USA. 120 (21), e2301985120. https://doi.org/10.1073/pnas.2301985120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schroeder B.C., Waldegger S., Fehr S., Bleich M., Warth R., Greger R., Jentsch T.J. 2000. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature. 403 (6766), 196–199. https://doi.org/10.1038/35003200

Article  CAS  PubMed  Google Scholar 

Karlova M., Abramochkin D.V., Pustovit K.B., Nesterova T., Novoseletsky V., Loussouarn G., Zaklyazminskaya E., Sokolova O.S. 2022. Disruption of a conservative motif in the C-terminal loop of the KCNQ1 channel causes LQT syndrome. Int. J. Mol. Sci. 23 (14), 7953. https://doi.org/10.3390/ijms23147953

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lundby A., Ravn L.S., Svendsen J.H., Olesen S.-P., Schmitt N. 2007. KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm. 4 (12), 1532–1541. https://doi.org/10.1016/j.hrthm.2007.07.022

Article  PubMed  Google Scholar 

Gullo V.P., McAlpine J., Lam K.S., Baker D., Petersen F. 2006. Drug discovery from natural products. J. Ind. Microbiol. Biotechnol. 33 (7), 523–531. https://doi.org/10.1007/s10295-006-0107-2

Article  CAS  PubMed  Google Scholar 

Huang B., Zhang Y. 2022. Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives. Drug Discov. Today. 27 (7), 1936–1944. https://doi.org/10.1016/j.drudis.2022.02.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polat R., Satıl F. 2012. An ethnobotanical survey of medicinal plants in Edremit Gulf (Balıkesir – Turkey). J. Ethnopharmacol. 139 (2), 626–641. https://doi.org/10.1016/j.jep.2011.12.004

Article  PubMed  Google Scholar 

Chituku S., Nikodem C., Maroyi A. 2022. Use of herbal, complementary and alternative medicines among pregnant women in Makoni District, Zimbabwe. Bol. Latinoam. Caribe Plantas Med. Aromat. 21 (5), 631–645. https://doi.org/10.37360/blacpma.22.21.5.39

Article  Google Scholar 

Morris M.E., Zhang S. 2006. Flavonoid–drug interactions: Effects of flavonoids on ABC transporters. Life Sci. 78 (18), 2116–2130. https://doi.org/10.1016/j.lfs.2005.12.003

Article  CAS  PubMed  Google Scholar 

Tran N., Pham B., Le L. 2020. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel). 9 (9), 252. https://doi.org/10.3390/biology9090252

Article  CAS  PubMed  Google Scholar 

Babu S., Jayaraman S. 2020. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacother. 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702

Article  CAS  Google Scholar 

De Silva A.M., Manville R.W., Abbott G.W. 2024. Deconstruction of an African folk medicine uncovers a novel molecular strategy for therapeutic potassium channel activation. Sci. Adv. 4 (11), eaav0824. https://doi.org/10.1126/sciadv.aav0824

Matschke V., Piccini I., Schubert J., Wrobel E., Lang F., Matschke J., Amedonu E., Meuth S.G., Strünker T., Strutz-Seebohm N., Greber B. 2016. The natural plant product rottlerin activates Kv7.1/KCNE1 channels. Cell. Physiol. Biochem. 40 (6), 1549–1558. https://doi.org/10.1159/000453205

Article  CAS  PubMed  Google Scholar 

Niu Y., Lin P. 2023. Advances of computer-aided drug design (CADD) in the development of anti-Azheimer’s-disease drugs. Drug Discov. Today. 28 (8), 103665. https://doi.org/10.1016/j.drudis.2023.103665

Article  CAS  PubMed  Google Scholar 

Akkoc S., Karatas H., Muhammed M.T., Kökbudak Z., Ceylan A., Almalki F., Laaroussi H., Ben Hadda T. 2023. Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J. Biomol. Struct. Dyn. 41 (14), 6695–6708. https://doi.org/10.1080/07391102.2022.2111360

Article  CAS  PubMed  Google Scholar 

Sun J., MacKinnon R. 2020. Structural basis of human KCNQ1 modulation and gating. Cell. 180 (2), 340–347. https://doi.org/10.1016/j.cell.2019.12.003

Article  CAS  PubMed  Google Scholar 

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.001

Article  Google Scholar 

Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmüller H., MacKerell A.D. 2017. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods. 14 (1), 71–73. https://doi.org/10.1038/nmeth.4067

Article  CAS  PubMed  Google Scholar 

Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26 (2), 283–291. https://doi.org/10.1107/S0021889892009944

Article  CAS  Google Scholar 

Dellin M., Rohrbeck I., Asrani P., Schreiber J.A., Ritter N., Glorius F., Wünsch B., Budde T., Temme L., Strünker T., Stallmeyer B. 2023. The second PI(3,5)P2 binding site in the S0 helix of KCNQ1 stabilizes PIP2 at the primary PI1 site with potential consequences on intermediate-to-open state transition. Biol. Chem. 404 (4), 241–254. https://doi.org/10.1515/hsz-2022-0247

Article  CAS  PubMed  Google Scholar 

Zhang H., Craciun L.C., Mirshahi T., Rohács T., Lopes C.M.B., Jin T., Logothetis D.E. 2003. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron. 37 (6), 963–975. https://doi.org/10.1016/S0896-6273(03)00125-9

Article  CAS  PubMed  Google Scholar 

Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

Article  CAS  PubMed  Google Scholar 

Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L.E., Brookes D.H., Wilson L., Chen J., Liles K., Chun M. 2018. Improvements to the APBS biomolecular solvation software suite. Protein Science. 27 (1), 112–128. https://doi.org/10.1002/pro.3280

Article  CAS  PubMed  Google Scholar 

Trott O., Olson A.J. 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334

Article  CAS  Google Scholar 

Li T., Wu K., Yue Z., Wang Y., Zhang F., Shen H. 2021. Structural basis for the modulation of human KCNQ4 by small-molecule drugs. Mol. Cell. 81 (1). 25–37. https://doi.org/10.1016/j.molcel.2020.10.037

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif