Larsen A.P., Steffensen A.B., Grunnet M., Olesen S.-P. 2011. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state. Biophys. J. 101, 818–827. https://doi.org/10.1016/j.bpj.2011.06.034
Article CAS PubMed PubMed Central Google Scholar
Shah N.H., Aizenman E. 2014. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl. Stroke Res. 5, 38–58. https://doi.org/10.1007/s12975-013-0297-7
Article CAS PubMed Google Scholar
Willegems K., Eldstrom J., Kyriakis E., Ataei F., Sahakyan H., Dou Y., Russo S., Van Petegem F., Fedida D. 2022. Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat. Commun. 13 (1), 3760. https://doi.org/10.1038/s41467-022-31526-7
Article CAS PubMed PubMed Central Google Scholar
Mandala V.S., MacKinnon R. 2023. The membrane electric field regulates the PIP2-binding site to gate the KCNQ1 channel. Proc. Natl. Acad. Sci. USA. 120 (21), e2301985120. https://doi.org/10.1073/pnas.2301985120
Article CAS PubMed PubMed Central Google Scholar
Schroeder B.C., Waldegger S., Fehr S., Bleich M., Warth R., Greger R., Jentsch T.J. 2000. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature. 403 (6766), 196–199. https://doi.org/10.1038/35003200
Article CAS PubMed Google Scholar
Karlova M., Abramochkin D.V., Pustovit K.B., Nesterova T., Novoseletsky V., Loussouarn G., Zaklyazminskaya E., Sokolova O.S. 2022. Disruption of a conservative motif in the C-terminal loop of the KCNQ1 channel causes LQT syndrome. Int. J. Mol. Sci. 23 (14), 7953. https://doi.org/10.3390/ijms23147953
Article CAS PubMed PubMed Central Google Scholar
Lundby A., Ravn L.S., Svendsen J.H., Olesen S.-P., Schmitt N. 2007. KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm. 4 (12), 1532–1541. https://doi.org/10.1016/j.hrthm.2007.07.022
Gullo V.P., McAlpine J., Lam K.S., Baker D., Petersen F. 2006. Drug discovery from natural products. J. Ind. Microbiol. Biotechnol. 33 (7), 523–531. https://doi.org/10.1007/s10295-006-0107-2
Article CAS PubMed Google Scholar
Huang B., Zhang Y. 2022. Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives. Drug Discov. Today. 27 (7), 1936–1944. https://doi.org/10.1016/j.drudis.2022.02.007
Article CAS PubMed PubMed Central Google Scholar
Polat R., Satıl F. 2012. An ethnobotanical survey of medicinal plants in Edremit Gulf (Balıkesir – Turkey). J. Ethnopharmacol. 139 (2), 626–641. https://doi.org/10.1016/j.jep.2011.12.004
Chituku S., Nikodem C., Maroyi A. 2022. Use of herbal, complementary and alternative medicines among pregnant women in Makoni District, Zimbabwe. Bol. Latinoam. Caribe Plantas Med. Aromat. 21 (5), 631–645. https://doi.org/10.37360/blacpma.22.21.5.39
Morris M.E., Zhang S. 2006. Flavonoid–drug interactions: Effects of flavonoids on ABC transporters. Life Sci. 78 (18), 2116–2130. https://doi.org/10.1016/j.lfs.2005.12.003
Article CAS PubMed Google Scholar
Tran N., Pham B., Le L. 2020. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel). 9 (9), 252. https://doi.org/10.3390/biology9090252
Article CAS PubMed Google Scholar
Babu S., Jayaraman S. 2020. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacother. 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702
De Silva A.M., Manville R.W., Abbott G.W. 2024. Deconstruction of an African folk medicine uncovers a novel molecular strategy for therapeutic potassium channel activation. Sci. Adv. 4 (11), eaav0824. https://doi.org/10.1126/sciadv.aav0824
Matschke V., Piccini I., Schubert J., Wrobel E., Lang F., Matschke J., Amedonu E., Meuth S.G., Strünker T., Strutz-Seebohm N., Greber B. 2016. The natural plant product rottlerin activates Kv7.1/KCNE1 channels. Cell. Physiol. Biochem. 40 (6), 1549–1558. https://doi.org/10.1159/000453205
Article CAS PubMed Google Scholar
Niu Y., Lin P. 2023. Advances of computer-aided drug design (CADD) in the development of anti-Azheimer’s-disease drugs. Drug Discov. Today. 28 (8), 103665. https://doi.org/10.1016/j.drudis.2023.103665
Article CAS PubMed Google Scholar
Akkoc S., Karatas H., Muhammed M.T., Kökbudak Z., Ceylan A., Almalki F., Laaroussi H., Ben Hadda T. 2023. Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J. Biomol. Struct. Dyn. 41 (14), 6695–6708. https://doi.org/10.1080/07391102.2022.2111360
Article CAS PubMed Google Scholar
Sun J., MacKinnon R. 2020. Structural basis of human KCNQ1 modulation and gating. Cell. 180 (2), 340–347. https://doi.org/10.1016/j.cell.2019.12.003
Article CAS PubMed Google Scholar
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmüller H., MacKerell A.D. 2017. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods. 14 (1), 71–73. https://doi.org/10.1038/nmeth.4067
Article CAS PubMed Google Scholar
Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26 (2), 283–291. https://doi.org/10.1107/S0021889892009944
Dellin M., Rohrbeck I., Asrani P., Schreiber J.A., Ritter N., Glorius F., Wünsch B., Budde T., Temme L., Strünker T., Stallmeyer B. 2023. The second PI(3,5)P2 binding site in the S0 helix of KCNQ1 stabilizes PIP2 at the primary PI1 site with potential consequences on intermediate-to-open state transition. Biol. Chem. 404 (4), 241–254. https://doi.org/10.1515/hsz-2022-0247
Article CAS PubMed Google Scholar
Zhang H., Craciun L.C., Mirshahi T., Rohács T., Lopes C.M.B., Jin T., Logothetis D.E. 2003. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron. 37 (6), 963–975. https://doi.org/10.1016/S0896-6273(03)00125-9
Article CAS PubMed Google Scholar
Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Article CAS PubMed Google Scholar
Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L.E., Brookes D.H., Wilson L., Chen J., Liles K., Chun M. 2018. Improvements to the APBS biomolecular solvation software suite. Protein Science. 27 (1), 112–128. https://doi.org/10.1002/pro.3280
Article CAS PubMed Google Scholar
Trott O., Olson A.J. 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334
Li T., Wu K., Yue Z., Wang Y., Zhang F., Shen H. 2021. Structural basis for the modulation of human KCNQ4 by small-molecule drugs. Mol. Cell. 81 (1). 25–37. https://doi.org/10.1016/j.molcel.2020.10.037
Comments (0)