Zhang, M., Chen, T., Lu, X., Lan, X., Chen, Z., Lu, S. 2024. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct. Targeted Ther. 9 (1), 1–43. https://doi.org/10.1038/s41392-024-01803-6
Klos A., Wende E., Wareham K.J., Monk P.N. 2013. International Union of Basic and Clinical Pharmacology. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol. Rev. 65 (1), 500–543. https://doi.org/10.1124/pr.111.005223
Article CAS PubMed Google Scholar
Zhao S., Wu K., Min X., et al. 2022. Protective role for C3aR in experimental chronic pyelonephritis. FASEB J. 36 (11), e22599. https://doi.org/10.1096/fj.202201007R
Article CAS PubMed Google Scholar
Wu M.C.L., Brennan F.H., Lynch J.P.L., et al. 2013. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc. Natl. Acad. Sci. USA. 110 (23) 9439–9444. https://doi.org/10.1073/pnas.1218815110
Article PubMed PubMed Central Google Scholar
Chen T., Lennon V.A., Liu Y.U., et al. 2020. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J. Clin. Invest. 130 (8), 4025–4038. https://doi.org/10.1172/jci134816
Article CAS PubMed PubMed Central Google Scholar
Lian H., Litvinchuk A., Chiang., et al. 2016. Astrocyte–microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J. Neurosci. 36 (2), 577–589. https://doi.org/10.1523/JNEUROSCI.2117-15.2016
Article CAS PubMed PubMed Central Google Scholar
Jacob A., Bao L., Brorson J. 2010. C3aR inhibition reduces neurodegeneration in experimental lupus. Lupus. 19 (1), 73–82. https://doi.org/10.1177/09612033093489
Article CAS PubMed Google Scholar
Banda N.K., Hyatt S., Antonioli A.H., et al. 2012. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J. Immunol. 188 (3), 1469. https://doi.org/10.4049/jimmunol.1102310
Article CAS PubMed Google Scholar
Boos L., Campbell I.L., Ames R., Wetsel R.A., Barnum S.R. 2004. Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis. J. Immunol. 173 (7), 4708–4714. https://doi.org/10.4049/jimmunol.173.7.4708
Article CAS PubMed Google Scholar
Wang Y., Liu W., Xu Y., et al. 2023. Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins. Nature Chem. Biol. 19 (11), 1351–1360. https://doi.org/10.1038/s41589-023-01339-w
Yadav M.K., Maharana J., Yadav R., et al. 2023. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell. 186 (22), 4956–4973.e21. https://doi.org/10.1016/j.cell.2023.09.020
Article CAS PubMed PubMed Central Google Scholar
Dmitrieva D.A., Kotova T.V., Safronova N.A., et al. 2023. Protein design strategies for the structural–functional studies of G protein-coupled receptors. Biochemistry (Moscow). 88 (Suppl. 1), 192–226. https://doi.org/10.1134/S0006297923140110
Katritch V., Fenalti G., Abola E.E., et al. 2014. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 39 (5), 233–244. https://doi.org/10.1016/j.tibs.2014.03.002
Article CAS PubMed PubMed Central Google Scholar
Peng X., Yang L., Liu Z., et al. 2022. Structural basis for recognition of antihistamine drug by human histamine receptor. Nature Commun. 13 (1), 1–9. https://doi.org/10.1038/s41467-022-33880-y
Alexandrov A.I., Mileni M., Chien E.Y.T., Hanson M.A., Stevens R.C. 2008. Microscale fluorescent thermal stability assay for membrane proteins. Structure. 16 (3), 351–359. https://doi.org/10.1016/j.str.2008.02.004
Article CAS PubMed Google Scholar
Chun E., Thompson A.A., Liu W., et al. 2012. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure. 20 (6), 967–976. https://doi.org/10.1016/j.str.2012.04.010
Article CAS PubMed PubMed Central Google Scholar
Gacasan S.B., Baker D.L., Parrill A.L. 2017. G protein-coupled receptors: The evolution of structural insight. AIMS Biophysics. 4 (3), 491–527. https://doi.org/10.3934/biophy.2017.3.491
Article CAS PubMed PubMed Central Google Scholar
Munk C., Mutt E., Isberg V., Nikolajsen L.F., Bibbe J.M., Flock T., Hanson M.A., Stevens R.C., Deupi X., Gloriam D.E. 2019. An online resource for GPCR structure determination and analysis. Nature Methods. 16 (2), 151. https://doi.org/10.1038/s41592-018-0302-x
Article CAS PubMed PubMed Central Google Scholar
Liu W., Chun E., Thompson A.A., Chubukov P., et al. 2012. Structural basis for allosteric regulation of GPCRS by sodium ions. Science. 337 (6091), 232–236. https://doi.org/10.1126/science.1219218
Article CAS PubMed PubMed Central Google Scholar
Chen T., Xiong M., Zong X., et al. 2020. Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nature Commun. 11 (1), 1–9. https://doi.org/10.1038/s41467-020-15009-1
Popov P., Peng Y., Shen L. 2018. Computational design of thermostabilizing point mutations for G protein-coupled receptors. Elife. 7 (2018), e34729. https://doi.org/10.7554/eLife.34729
Article PubMed PubMed Central Google Scholar
White K.L., Eddy M.T., Gao Z.G. 2018. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure. 26 (2), 259–269.e5. https://doi.org/10.1016/j.str.2017.12.013
Comments (0)