Expression and Stabilization of Recombinant Human C3aR Receptor

Zhang, M., Chen, T., Lu, X., Lan, X., Chen, Z., Lu, S. 2024. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct. Targeted Ther. 9 (1), 1–43. https://doi.org/10.1038/s41392-024-01803-6

Article  CAS  Google Scholar 

Klos A., Wende E., Wareham K.J., Monk P.N. 2013. International Union of Basic and Clinical Pharmacology. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol. Rev. 65 (1), 500–543. https://doi.org/10.1124/pr.111.005223

Article  CAS  PubMed  Google Scholar 

Zhao S., Wu K., Min X., et al. 2022. Protective role for C3aR in experimental chronic pyelonephritis. FASEB J. 36 (11), e22599. https://doi.org/10.1096/fj.202201007R

Article  CAS  PubMed  Google Scholar 

Wu M.C.L., Brennan F.H., Lynch J.P.L., et al. 2013. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc. Natl. Acad. Sci. USA. 110 (23) 9439–9444. https://doi.org/10.1073/pnas.1218815110

Article  PubMed  PubMed Central  Google Scholar 

Chen T., Lennon V.A., Liu Y.U., et al. 2020. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J. Clin. Invest. 130 (8), 4025–4038. https://doi.org/10.1172/jci134816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lian H., Litvinchuk A., Chiang., et al. 2016. Astrocyte–microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J. Neurosci. 36 (2), 577–589. https://doi.org/10.1523/JNEUROSCI.2117-15.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacob A., Bao L., Brorson J. 2010. C3aR inhibition reduces neurodegeneration in experimental lupus. Lupus. 19 (1), 73–82. https://doi.org/10.1177/09612033093489

Article  CAS  PubMed  Google Scholar 

Banda N.K., Hyatt S., Antonioli A.H., et al. 2012. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J. Immunol. 188 (3), 1469. https://doi.org/10.4049/jimmunol.1102310

Article  CAS  PubMed  Google Scholar 

Boos L., Campbell I.L., Ames R., Wetsel R.A., Barnum S.R. 2004. Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis. J. Immunol. 173 (7), 4708–4714. https://doi.org/10.4049/jimmunol.173.7.4708

Article  CAS  PubMed  Google Scholar 

Wang Y., Liu W., Xu Y., et al. 2023. Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins. Nature Chem. Biol. 19 (11), 1351–1360. https://doi.org/10.1038/s41589-023-01339-w

Article  CAS  Google Scholar 

Yadav M.K., Maharana J., Yadav R., et al. 2023. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell. 186 (22), 4956–4973.e21. https://doi.org/10.1016/j.cell.2023.09.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dmitrieva D.A., Kotova T.V., Safronova N.A., et al. 2023. Protein design strategies for the structural–functional studies of G protein-coupled receptors. Biochemistry (Moscow). 88 (Suppl. 1), 192–226. https://doi.org/10.1134/S0006297923140110

Article  Google Scholar 

Katritch V., Fenalti G., Abola E.E., et al. 2014. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 39 (5), 233–244. https://doi.org/10.1016/j.tibs.2014.03.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng X., Yang L., Liu Z., et al. 2022. Structural basis for recognition of antihistamine drug by human histamine receptor. Nature Commun. 13 (1), 1–9. https://doi.org/10.1038/s41467-022-33880-y

Article  CAS  Google Scholar 

Alexandrov A.I., Mileni M., Chien E.Y.T., Hanson M.A., Stevens R.C. 2008. Microscale fluorescent thermal stability assay for membrane proteins. Structure. 16 (3), 351–359. https://doi.org/10.1016/j.str.2008.02.004

Article  CAS  PubMed  Google Scholar 

Chun E., Thompson A.A., Liu W., et al. 2012. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure. 20 (6), 967–976. https://doi.org/10.1016/j.str.2012.04.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gacasan S.B., Baker D.L., Parrill A.L. 2017. G protein-coupled receptors: The evolution of structural insight. AIMS Biophysics. 4 (3), 491–527. https://doi.org/10.3934/biophy.2017.3.491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munk C., Mutt E., Isberg V., Nikolajsen L.F., Bibbe J.M., Flock T., Hanson M.A., Stevens R.C., Deupi X., Gloriam D.E. 2019. An online resource for GPCR structure determination and analysis. Nature Methods. 16 (2), 151. https://doi.org/10.1038/s41592-018-0302-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W., Chun E., Thompson A.A., Chubukov P., et al. 2012. Structural basis for allosteric regulation of GPCRS by sodium ions. Science. 337 (6091), 232–236. https://doi.org/10.1126/science.1219218

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen T., Xiong M., Zong X., et al. 2020. Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nature Commun. 11 (1), 1–9. https://doi.org/10.1038/s41467-020-15009-1

Article  CAS  Google Scholar 

Popov P., Peng Y., Shen L. 2018. Computational design of thermostabilizing point mutations for G protein-coupled receptors. Elife. 7 (2018), e34729. https://doi.org/10.7554/eLife.34729

Article  PubMed  PubMed Central  Google Scholar 

White K.L., Eddy M.T., Gao Z.G. 2018. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure. 26 (2), 259–269.e5. https://doi.org/10.1016/j.str.2017.12.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif