Davies K.M., Blum T.B., Kühlbrandt W. 2018. Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. Proc. Natl. Acad. Sci. USA. 115, 3024–3029. https://doi.org/10.1073/pnas.1720702115
Article CAS PubMed PubMed Central Google Scholar
Schägger H., de Coo R., Bauer M.F., Hofmann S., Godinot C., Brandt U. 2004. Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J. Biol. Chem. 279, 36 349–36 353. https://doi.org/10.1074/jbc.M404033200
Genova M.L., Bianchi C., Lenaz G., 2005. Supercomplex organization of the mitochondrial respiratory chain and the role of the Coenzyme Q pool: Pathophysiological implications. BioFactors Oxf. Engl. 25, 5–20.
Blum T.B., Hahn A., Meier T., Davies K.M., Kühlbrandt W. 2019. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc. Natl. Acad. Sci. USA. 116, 4250–4255. https://doi.org/10.1073/pnas.1816556116
Article CAS PubMed PubMed Central Google Scholar
Buzhynskyy N., Sens P., Prima V., Sturgis J.N., Scheuring S. 2007. Rows of ATP synthase dimers in native mitochondrial inner membranes. Biophys. J. 93, 2870–2876. https://doi.org/10.1529/biophysj.107.109728
Article CAS PubMed PubMed Central Google Scholar
Nesterov S.V., Chesnokov Yu.M., Kamyshinsky R.A., Yaguzhinsky L.S., Vasilov R.G. 2020. Determining the structure and location of the ATP synthase in the membranes of rat’s heart mitochondria using cryoelectron tomography. Nanotechnol. Russia. 15, 83–89. https://doi.org/10.1134/S1995078020010139
Dietrich L., Agip A.-N.A., Kunz C., Schwarz A., Kühlbrandt W. 2024. In situ structure and rotary states of mitochondrial ATP synthase in whole Polytomella cells. Science. 385, 1086–1090. https://doi.org/10.1126/science.adp4640
Article CAS PubMed Google Scholar
Davies K.M., Strauss M., Daum B., Kief J.H., Osiewacz H.D., Rycovska A., Zickermann V., Kühlbrandt W. 2011. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. USA. 108, 14 121–14 126. https://doi.org/10.1073/pnas.1103621108
Waltz F., Righetto R.D., Kelley R., Zhang X., Obr M., Khavnekar S., Kotecha A., Engel B.D. 2024. In-cell architecture of the mitochondrial respiratory chain. bioRxiv. 2024.09.03.610704. https://doi.org/10.1101/2024.09.03.610704
Nesterov S., Chesnokov Y., Kamyshinsky R., Panteleeva A., Lyamzaev K., Vasilov R., Yaguzhinsky L. 2021. Ordered clusters of the complete oxidative phosphorylation system in cardiac mitochondria. Int. J. Mol. Sci. 22, article no. 1462. https://doi.org/10.3390/ijms22031462
Article CAS PubMed PubMed Central Google Scholar
Mühleip A., Flygaard R.K., Baradaran R., Haapanen O., Gruhl T., Tobiasson V., Maréchal A., Sharma V., Amunts A. 2023. Structural basis of mitochondrial membrane bending by the I–II–III2–IV2 supercomplex. Nature. 615, 934–938. https://doi.org/10.1038/s41586-023-05817-y
Article CAS PubMed PubMed Central Google Scholar
Klusch N., Dreimann M., Senkler J., Rugen N., Kühlbrandt W., Braun H.-P. 2023. Cryo-EM structure of the respiratory I + III2 supercomplex from Arabidopsis thaliana at 2 Å resolution. Nat. Plants. 9, 142–156. https://doi.org/10.1038/s41477-022-01308-6
Article CAS PubMed Google Scholar
Sjöholm J., Bergstrand J., Nilsson T., Šachl R., Ballmoos C. von, Widengren J., Brzezinski P. 2017. The lateral distance between a proton pump and ATP synthase determines the ATP-synthesis rate. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-02836-4
Wolf D.M., Segawa M., Kondadi A.K., Anand R., Bailey S.T., Reichert A.S., van der Bliek A.M., Shackelford D.B., Liesa M., Shirihai O.S. 2019. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J. 38, e101056. https://doi.org/10.15252/embj.2018101056
Article CAS PubMed PubMed Central Google Scholar
Plokhikh K.S., Nesterov S.V., Chesnokov Y.M., Rogov A.G., Kamyshinsky R.A., Vasiliev A.L., Yaguzhinsky L.S., Vasilov R.G. 2024. Association of 2-oxoacid dehydrogenase complexes with respirasomes in mitochondria. FEBS J. 291, 132–141. https://doi.org/10.1111/febs.16965
Article CAS PubMed Google Scholar
Nesterov S.V., Plokhikh K.S., Chesnokov Y.M., Mustafin D.A., Goleva T.N., Rogov A.G., Vasilov R.G., Yaguzhinsky L.S. 2024. Safari with an electron gun: Visualization of protein and membrane interactions in mitochondria in natural environment. Biochem. (Moscow). 89, 257–268. https://doi.org/10.1134/S0006297924020068
Strauss M., Hofhaus G., Schröder R.R., Kühlbrandt W. 2008. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27, 1154–1160. https://doi.org/10.1038/emboj.2008.35
Article CAS PubMed PubMed Central Google Scholar
Gao J., Hou R., Li L., Hu J. 2021. Membrane-mediated interactions between protein inclusions. Front. Mol. Biosci. 8, 811711. https://doi.org/10.3389/fmolb.2021.811711
Article CAS PubMed PubMed Central Google Scholar
Krasinskaya I.P., Marshansky V.N., Dragunova S.F., Yaguzhinsky L.S. 1984. Relationships of respiratory chain and ATP-synthetase in energized mitochondria. FEBS Lett. 167, 176–180. https://doi.org/10.1016/0014-5793(84)80856-X
Article CAS PubMed Google Scholar
Byvshev I.M., Murugova T.N., Ivankov A.I., Kuklin A.I., Vangeli I.M., Teplova V.V., Popov V.I., Nesterov S.V., Yaguzhinskiy L.S. 2018. The hypoxia signal as a potential inducer of supercomplex formation in the oxidative phosphorylation system of heart mitochondria. Biophysics. 63, 549–560. https://doi.org/10.1134/S0006350918040048
Yaguzhinsky L.S., Yurkov V.I., Krasinskaya I.P. 2006. On the localized coupling of respiration and phosphorylation in mitochondria. Biochim. Biophys. Acta, Bioenerg. 1757, 408–414. https://doi.org/10.1016/j.bbabio.2006.04.001
Krasinskaia I.P., Litvinov I.S., Zakharov S.D., Bakeeva L.E., Iaguzhinskiĭ L.S. 1989. Two qualitatively different structuro-functional states of mitochondria. Biokhimia (Mosc.) (Rus.). 54, 1550–1556.
Yaguzhinsky L.S., Skorobogatova Y.A., Nesterov S.V. 2017. Functionally significant low-temperature structural alterations in mitochondrial membranes of homoiothermic animals. Biophysics. 62, 415–420. https://doi.org/10.1134/S0006350917030241
Srere P.A., Inman L., Liposits Z., Sumegi B. 1988. Organization of the mitochondrial matrix. In: Integration of mitochondrial function. J.J. Lemasters, C.R. Hackenbrock, R.G. Thurman, H.V. Westerhoff, eds. Boston, MA: Springer US, p. 279–288.
Adams R.A., Liu Z., Hsieh C., Marko M., Lederer W.J., Jafri M.S., Mannella C. 2023. Structural analysis of mitochondria in cardiomyocytes: Insights into bioenergetics and membrane remodeling. Curr. Issues Mol. Biol. 45, 6097–6115. https://doi.org/10.3390/cimb45070385
Article CAS PubMed PubMed Central Google Scholar
Nesterov S.V., Smirnova E.G., Yaguzhinsky L.S. 2022. Mechanism of energy storage and transformation in the mitochondria at the water–membrane interface. Biochem. (Moscow). 87, 179–190. https://doi.org/10.1134/S0006297922020092
Mulkidjanian A.Y., Heberle J., Cherepanov D.A. 2006. Protons @ interfaces: Implications for biological energy conversion. Biochim. Biophys. Acta. 1757, 913–930. https://doi.org/10.1016/j.bbabio.2006.02.015
Article CAS PubMed Google Scholar
Lee J.W. 2020. Protonic capacitor: Elucidating the biological significance of mitochondrial cristae formation. Sci. Rep. 10, 10304. https://doi.org/10.1038/s41598-020-66203-6
Article CAS PubMed PubMed Central Google Scholar
Beltrán-Heredia E., Tsai F.-C., Salinas-Almaguer S., Cao F.J., Bassereau P., Monroy F. 2019. Membrane curvature induces cardiolipin sorting. Commun. Biol. 2, 1–7. https://doi.org/10.1038/s42003-019-0471-x
Arnarez C., Marrink S.J., Periole X. 2013. Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci. Rep. 3, 1–9.
Comments (0)