Dewan K.K., Linz B., DeRocco S., Harvill E.T. 2020. Acellular pertussis vaccine components: Today and tomorrow. J. Vaccines. 8 (2), 217. https://doi.org/10.3390/vaccines8020217
Decker M.D., Edwards K.M., Steinhoff M.C., Rennels M.B., et al. 1995. Comparison of 13 acellular pertussis vaccines: Adverse reactions. J. Pediatrics. 96, 557–566. https://doi.org/10.1542/peds.96.3.557
Szwejser-Zawislak E., Wilk M.M., Piszczek P., Krawczyket J., et al. 2022. Evaluation of whole-cell and acellular pertussis vaccines in the context of long-term herd immunity. J. Vaccines. 11 (1), 1. https://doi.org/10.3390/vaccines11010001
Andreasen C., Carbonetti N.H. 2008. Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice. J. Infect. Immun. 76 (11), 5139–5148. https://doi.org/10.1128/iai.00895-08
Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A. 2014. Bordetella pertussis pathogenesis: Current and future challenges. J. Nat. Rev. Microbiol. 12 (4), 274–288. https://doi.org/10.1038/nrmicro3235
Ausar S.F., Zhu S., Duprez J., Cohen M., et al. 2020. Genetically detoxified pertussis toxin displays near-identical structure to its wild-type and exhibits robust immunogenicity. J. Commun. Biol. 3 (1), 427. https://doi.org/10.1038/s42003-020-01153-3
Article CAS PubMed Google Scholar
Chokephaibulkit K., Puthanakit T., Bhat N., Mansouri S., et al. 2022. A phase 2 randomized controlled dose-ranging trial of recombinant pertussis booster vaccines containing genetically inactivated pertussis toxin in women of childbearing age. J. Vaccines. 40 (15), 2352–2361. https://doi.org/10.1016/j.vaccine.2021.10.076
Krueger K.M., Barbieri J. T. 1994. Assignment of functional domains involved in ADP-ribosylation and B‑oligomer binding within the carboxyl terminus of the S1 subunit of pertussis toxin. J. Infect. Immun. 65 (5), 2071–2078. https://doi.org/10.1128/iai.62.5.2071-2078.1994
Garanina I.A., Fisunov G.Y., Govorun V.M. 2018. BAC-BROWSER: The tool for visualization and analysis of prokaryotic genomes. J. Front. Microbiol. 9. 2827. https://doi.org/10.3389/fmicb.2018.02827
Matyushkina D., Pobeguts O., Butenko I. Vanyushkina A., et al. 2016. Phase transition of the bacterium upon invasion of a host cell as a mechanism of adaptation: A Mycoplasma gallisepticum model. J. Sci. Rep. 6 (1), 35959. https://doi.org/10.1038/srep35959
Pinchuk L. M., Filipov N. M. 2008. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. J. Immun. Ageing. 5, 1–12. https://doi.org/10.1186/1742-4933-5-1
Roduit C., Bozzotti P., Mielcarek N., Lambert P., et al. 2002. Immunogenicity and protective efficacy of neonatal vaccination against Bordetella pertussis in a murine model: Evidence for early control of pertussis. J. Infect. Immun. 70 (7), 3521–3528. https://doi.org/10.1128/iai.70.7.3521-3528.2002
Fedele G., Cassone A., Ausiello C.M. 2015. T-cell immune responses to Bordetella pertussis infection and vaccination. J. Pathogens and Disease. 73 (7), ftv051.
Higgs R., Higgins S.C., Ross P.J., Mills K.H. 2012. Immunity to the respiratory pathogen Bordetella pertussis. J. Mucosal Immunol. 5 (5), 485–500. https://doi.org/10.1038/mi.2012.54
Diavatopoulos D.A., Edwards K.M. 2017. What is wrong with pertussis vaccine immunity? J. Cold Spring Harb. Perspect. Biol. 9 (12), a029553. https://doi.org/10.1101/cshperspect.a029553
Comments (0)