Humoral and Cellular Immune Response to the Genetically Detoxified S1 Subunit of Pertussis Toxin in Mice

Dewan K.K., Linz B., DeRocco S., Harvill E.T. 2020. Acellular pertussis vaccine components: Today and tomorrow. J. Vaccines. 8 (2), 217. https://doi.org/10.3390/vaccines8020217

Article  CAS  Google Scholar 

Decker M.D., Edwards K.M., Steinhoff M.C., Rennels M.B., et al. 1995. Comparison of 13 acellular pertussis vaccines: Adverse reactions. J. Pediatrics. 96, 557–566. https://doi.org/10.1542/peds.96.3.557

Article  CAS  Google Scholar 

Szwejser-Zawislak E., Wilk M.M., Piszczek P., Krawczyket J., et al. 2022. Evaluation of whole-cell and acellular pertussis vaccines in the context of long-term herd immunity. J. Vaccines. 11 (1), 1. https://doi.org/10.3390/vaccines11010001

Article  CAS  Google Scholar 

Andreasen C., Carbonetti N.H. 2008. Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice. J. Infect. Immun. 76 (11), 5139–5148. https://doi.org/10.1128/iai.00895-08

Article  CAS  Google Scholar 

Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A. 2014. Bordetella pertussis pathogenesis: Current and future challenges. J. Nat. Rev. Microbiol. 12 (4), 274–288. https://doi.org/10.1038/nrmicro3235

Article  CAS  Google Scholar 

Ausar S.F., Zhu S., Duprez J., Cohen M., et al. 2020. Genetically detoxified pertussis toxin displays near-identical structure to its wild-type and exhibits robust immunogenicity. J. Commun. Biol. 3 (1), 427. https://doi.org/10.1038/s42003-020-01153-3

Article  CAS  PubMed  Google Scholar 

Chokephaibulkit K., Puthanakit T., Bhat N., Mansouri S., et al. 2022. A phase 2 randomized controlled dose-ranging trial of recombinant pertussis booster vaccines containing genetically inactivated pertussis toxin in women of childbearing age. J. Vaccines. 40 (15), 2352–2361. https://doi.org/10.1016/j.vaccine.2021.10.076

Article  CAS  Google Scholar 

Krueger K.M., Barbieri J. T. 1994. Assignment of functional domains involved in ADP-ribosylation and B‑oligomer binding within the carboxyl terminus of the S1 subunit of pertussis toxin. J. Infect. Immun. 65 (5), 2071–2078. https://doi.org/10.1128/iai.62.5.2071-2078.1994

Article  Google Scholar 

Garanina I.A., Fisunov G.Y., Govorun V.M. 2018. BAC-BROWSER: The tool for visualization and analysis of prokaryotic genomes. J. Front. Microbiol. 9. 2827. https://doi.org/10.3389/fmicb.2018.02827

Article  Google Scholar 

Matyushkina D., Pobeguts O., Butenko I. Vanyushkina A., et al. 2016. Phase transition of the bacterium upon invasion of a host cell as a mechanism of adaptation: A Mycoplasma gallisepticum model. J. Sci. Rep. 6 (1), 35959. https://doi.org/10.1038/srep35959

Article  CAS  Google Scholar 

Pinchuk L. M., Filipov N. M. 2008. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. J. Immun. Ageing. 5, 1–12. https://doi.org/10.1186/1742-4933-5-1

Article  CAS  Google Scholar 

Roduit C., Bozzotti P., Mielcarek N., Lambert P., et al. 2002. Immunogenicity and protective efficacy of neonatal vaccination against Bordetella pertussis in a murine model: Evidence for early control of pertussis. J. Infect. Immun. 70 (7), 3521–3528. https://doi.org/10.1128/iai.70.7.3521-3528.2002

Article  CAS  Google Scholar 

Fedele G., Cassone A., Ausiello C.M. 2015. T-cell immune responses to Bordetella pertussis infection and vaccination. J. Pathogens and Disease. 73 (7), ftv051.

Article  Google Scholar 

Higgs R., Higgins S.C., Ross P.J., Mills K.H. 2012. Immunity to the respiratory pathogen Bordetella pertussis. J. Mucosal Immunol. 5 (5), 485–500. https://doi.org/10.1038/mi.2012.54

Article  CAS  Google Scholar 

Diavatopoulos D.A., Edwards K.M. 2017. What is wrong with pertussis vaccine immunity? J. Cold Spring Harb. Perspect. Biol. 9 (12), a029553. https://doi.org/10.1101/cshperspect.a029553

Article  CAS  Google Scholar 

Comments (0)

No login
gif