Lippi G., Sanchis-Gomar F., Cervellin G. 2021. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Intern. J. Stroke. 16 (2), 217–221. https://doi.org/10.1177/1747493019897870
Yamaguchi T., Tsuchiya, T., Nakahara S., Fukui A., Nagamoto Y., Murotani K., et al. 2016. Efficacy of left atrial voltage-based catheter ablation of persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 27 (9), 1055–1063. https://doi.org/10.1111/jce.13019
Kirchhof P., Calkins H. 2017. Catheter ablation in patients with persistent atrial fibrillation. European Heart J. 38 (1), 20–26. https://doi.org/10.1093/eurheartj/ehw260
Verma A., Jiang C.Y., Betts T.R., Chen J., Deisenhofer I., Mantovan R., et al. 2015. Approaches to catheter ablation for persistent atrial fibrillation. New Engl. J. Med. 372 (19), 1812–1822. https://doi.org/10.1056/NEJMoa1408288
Yu H.T., Kim I.S., Kim T.H., Uhm J.S., Kim J.Y., Joung B., et al. 2020. Persistent atrial fibrillation over 3 years is associated with higher recurrence after catheter ablation. J. Cardiovasc. Electrophysiol. 31 (2), 457–464. https://doi.org/10.1111/jce.14345
Article PubMed PubMed Central Google Scholar
Burstein B., Nattel S. 2008. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J. Amer. Coll. Cardiol. 51 (8), 802–809. https://doi.org/10.1016/j.jacc.2007.09.064
Boyle P.M., Zghaib T., Zahid S., Ali R.L., Deng D., Franceschi W.H., Trayanova, N. A. 2019. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nature Biomed. Engin. 3 (11), 870–879. https://doi.org/10.1038/s41551-019-0437-9
Ali R.L., Hakim J.B., Boyle P.M., Zahid S., Sivasambu B., Marine J.E., et al. 2019. Arrhythmogenic propensity of the fibrotic substrate after atrial fibrillation ablation: A longitudinal study using magnetic resonance imaging-based atrial models. Cardiovasc. Res. 115 (12), 1757–1765. https://doi.org/10.1093/cvr/cvz083
Article CAS PubMed PubMed Central Google Scholar
Honarbakhsh S., Hunter R.J., Dhillon G., Ullah W., Keating E., Providencia R., et al. 2018. Validation of a novel mapping system and utility for mapping complex atrial tachycardias. J. Cardiovasc. Electrophysiol. 29 (3), 395–403. https://doi.org/10.1111/jce.13437
Article CAS PubMed Google Scholar
Courtemanche M., Ramirez R.J., Nattel S. 1999. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: Insights from a mathematical model. Cardiovasc. Res. 42 (2), 477–489. https://doi.org/10.1016/s0008-6363(99)00034-6
Article CAS PubMed Google Scholar
Karim R., Housden R.J., Balasubramaniam M., Chen Z., Perry D., Uddin A., et al. 2013. Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: An open-access grand challenge. J. Cardiovasc. Magn. Resonance. 15 (1), 105. https://doi.org/10.1186/1532-429X-15-105
Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.-C., Pujol S., Bauer C., Jennings D., Fennessy F.M., Sonka M., Buatti J., Aylward S.R., Miller J.V., Pieper S., Kikinis R. 2012. 3D slicer as an image computing platform for the quantitative imaging network. Magn. Resonance Imag. 30 (9), 1323–1341. https://doi.org/10.1016/j.mri.2012.05.001
Huang Z., Zhang T., Heng W., Shi B., Zhou S. 2022. Real-time intermediate flow estimation for video frame interpolation. Eur. Confer. Computer Vision. Cham: Springer Nature. 13674. 624–642. https://doi.org/10.1007/978-3-031-19781-9_36
Plank G., Loewe A., Neic A., Augustin C., Huang Y.L., Gsell M.A., et al. 2021. The openCARP simulation environment for cardiac electrophysiology. Comp. Meth. Progr. Biomed. 208. 106223. https://doi.org/10.1016/j.cmpb.2021.106223
Azzolin L., Eichenlaub M., Nagel C., Nairn D., Sánchez J., Unger L., et al. 2023. AugmentA: Patient-specific augmented atrial model generation tool. Computerized Med. Imag. Graph. 108. 102265. https://doi.org/10.1016/j.compmedimag.2023.102265
Courtemanche M., Ramirez R.J., Nattel S. 1998. Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Amer. J. Physiol., Heart Circ. Physiol. 275 (1), H301–H321. https://doi.org/10.1152/ajpheart.1998.275.1.H301
Gao Z., Lau C.P., Chiu S.W., Li G.R. 2004. Inhibition of ultra-rapid delayed rectifier K+ current by verapamil in human atrial myocytes. J. Mol. Cell. Cardiol. 36 (2), 257–263. https://doi.org/10.1016/j.yjmcc.2003.11.003
Article CAS PubMed Google Scholar
Britton O.J., Abi-Gerges N., Page G., Ghetti A., Miller P.E., Rodriguez B. 2017. Quantitative comparison of effects of dofetilide, sotalol, quinidine, and verapamil between human ex vivo trabeculae and in silico ventricular models incorporating inter-individual action potential variability. Front. Physiol. 8, 597. https://doi.org/10.3389/fphys.2017.00597
Article PubMed PubMed Central Google Scholar
Majumder R., Pandit R., Panfilov A.V. 2014. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue. Amer. J. Physiol., Heart Circ. Physiol. 307 (7), H1024–H1035. https://doi.org/10.1152/ajpheart.00593.2013
Marrouche N.F. 2014. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. J. Amer. Med. Associat. 312 (17), 1805–1805. https://doi.org/10.1001/jama.2014.3
Himmel H.M., Bussek A., Hoffmann M., Beckmann R., Lohmann H., Schmidt M., Wettwer E. 2012. Field and action potential recordings in heart slices: Correlation with established in vitro and in vivo models. Brit. J. Pharmacol. 166 (1), 276–296. https://doi.org/10.1111/j.1476-5381.2011.01775.x
Duytschaever M.F., Garratt C.J., Allessie M.A. 2000. Profibrillatory effects of verapamil but not of digoxin in the goat model of atrial fibrillation. J. Cardiovasc. Electrophysiol. 11 (12), 1375–1385. https://doi.org/10.1046/j.1540-8167.2000.01375.x
Article CAS PubMed Google Scholar
Zhou P., Zhang S.M., Wang Q.L., Wu Q., Chen M., Pei J.M. 2013. Anti-arrhythmic effect of verapamil is accompanied by preservation of Cx43 protein in rat heart. PLoS One. 8 (8), e71567. https://doi.org/10.1371/journal.pone.0071567
Article CAS PubMed PubMed Central Google Scholar
Stern E.H., Pitchon R., King B.D., Guerrero J., Schneider R.R., Wiener I. 1982. Clinical use of oral verapamil in chronic and paroxysmal atrial fibrillation. Chest. 81 (3), 308–311. https://doi.org/10.1378/chest.81.3.308
Article CAS PubMed Google Scholar
den Uijl D.W., Cabanelas N., Benito E.M., Figueras R., Alarcon F., Borras R., et al. 2018. Impact of left atrial volume, sphericity, and fibrosis on the outcome of catheter ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 29 (5), 740–746. https://doi.org/10.1111/jce.13482
Kudryashova N., Nizamieva A., Tsvelaya V., Panfilov A.V., et al. 2019. Self-organization of conducting pathways explains electrical wave propagation in cardiac tissues with high fraction of non-conducting cells. PLoS Comput. Biol. 15 (3), e1006597. https://doi.org/10.1371/journal.pcbi.1006597
Article CAS PubMed PubMed Central Google Scholar
Kudryashova N., Tsvelaya V., Agladze K., Panfilov A. 2017. Virtual cardiac monolayers for electrical wave propagation. Sci. Rep. 7 (1), 7887. https://doi.org/10.1038/s41598-017-07653-3
Comments (0)