Multiplexed Detection of Epitope Specific T-Cell Responses Using CD20 Trogocytosis

Groot A.S.D., Moise L., Terry F., Gutierrez A.H., Hindocha P., Richard G., Hoft D.F., Ross T.M., Noe A.R., Takahashi Y., Kotraiah V., Silk S.E., Nielsen C.M., Minassian A.M., Ashfield R., Ardito M., Draper S.J., Martin W.D. 2020. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools. Front. Immunol. 11, 442. https://doi.org/10.3389/fimmu.2020.00442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pétremand R., Chiffelle J., Bobisse S., Perez M.A.S., Schmidt J., Arnaud M., Barras D., Lozano-Rabella M., Genolet R., Sauvage C., Saugy D., Michel A., Huguenin-Bergenat A.-L., Capt C., Moore J.S., D. Vito C., Labidi-Galy S.I., Kandalaft L.E., Laniti D.D., Bassani-Sternberg M., Oliveira G., Wu C.J., Coukos G., Zoete V., Harari A. 2024. Identification of clinically relevant T cell receptors for personalized T cell therapy using combinatorial algorithms. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02232-0

Quah B.J.C., Parish C.R. 2010. The use of carboxyfluorescein diacetate succinimidyl ester (CFSE) to monitor lymphocyte proliferation. J. Vis. Exp. (44), 2259. https://doi.org/10.3791/2259

Yang X., Garner L.I., Zvyagin I.V., Paley M.A., Komech E.A., Jude K.M., Zhao X., Fernandes R.A., Hassman L.M., Paley G.L., Savvides C.S., Brackenridge S., Quastel M.N., Chudakov D.M., Bowness P., Yokoyama W.M., McMichael A.J., Gillespie G.M., Garcia K.C. 2022. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature. 612 (7941), 771–777. https://doi.org/10.1038/s41586-022-05501-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saggau C., Bacher P., Esser D., Rasa M., Meise S., Mohr N., Kohlstedt N., Hutloff A., Schacht S.-S., Dargvainiene J., Martini G.R., Stürner K.H., Schröder I., Markewitz R., Hartl J., Hastermann M., Duchow A., Schindler P., Becker M., Bautista C., Gottfreund J., Walter J., Polansky J.K., Yang M., Naghavian R., Wendorff M., Schuster E.-M., Dahl A., Petzold A., Reinhardt S., Franke A., Wieczorek M., Henschel L., Berger D., Heine G., Holtsche M., Häußler V., Peters C., Schmidt E., Fillatreau S., Busch D.H., Wandinger K.-P., Schober K., Martin R., Paul F., Leypoldt F., Scheffold A. 2024. Autoantigen-specific CD4+ T cells acquire an exhausted phenotype and persist in human antigen-specific autoimmune diseases. Immunity. 57 (10), 2416–2432.e8. https://doi.org/10.1016/j.immuni.2024.08.005

Article  CAS  PubMed  Google Scholar 

Greenberg P.D., Müll M.W. 2014. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells, Nat. Protoc. 9 (4), 950–966. https://doi.org/10.1038/nprot.2014.064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayaz-Guner S., Acar M.B., Boyvat D., Guner H., Bozalan H., Güzel M., Yıldır S.K., Altınsoy N., Fındık F., Karakükçü M., Özcan S. 2022. Protocol for cell surface biotinylation of magnetic labeled and captured human peripheral blood mononuclear cells. STAR Protoc. 3 (4), 101863. https://doi.org/10.1016/j.xpro.2022.101863

Article  CAS  PubMed  PubMed Central  Google Scholar 

Attaf M., Roider J., Malik A., Rafael C.R., Dolton G., Prendergast A.J., Leslie A., Ndung’u T., Kløverpris H.N., Sewell A.K., Goulder P.J. 2020. Cytomegalovirus-mediated T cell receptor repertoire perturbation is present in early life. Front. Immunol. 11, 1587. https://doi.org/10.3389/fimmu.2020.01587

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo X., Meng Q., Rao M., Liu Z., Paraschoudi G., Dodoo E., Maeurer M. 2018. The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology. 155 (3), 294–308. https://doi.org/10.1111/imm.12991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakayama M., Hori A., Toyoura S., Yamaguchi S.-I. 2021. Shaping of T cell functions by trogocytosis. Cells. 10 (5), 1155. https://doi.org/10.3390/cells10051155

Article  CAS  PubMed  PubMed Central  Google Scholar 

van den Berg S.P.H., Derksen L.Y., Drylewicz J., Nanlohy N.M., Beckers L., Lanfermeijer J., Gessel S.N., Vos M., Otto S.A., de Boer R.J., Tesselaar K., Borghans J.A.M., van Baarle D. 2021. Quantification of T-cell dynamics during latent cytomegalovirus infection in humans. PLoS Pathog. 17 (12), e1010152. https://doi.org/10.1371/journal.ppat.1010152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daubeuf S., Puaux A.-L., Joly E., Hudrisier D. 2006. A simple trogocytosis-based method to detect, quantify, characterize and purify antigen-specific live lymphocytes by flow cytometry, via their capture of membrane fragments from antigen-presenting cells. Nat. Protoc. 1 (6), 2536–2542. https://doi.org/10.1038/nprot.2006.400

Article  CAS  PubMed  Google Scholar 

Park J.-S., Kim J.-H., Soh W.-C., Lee K.-S., Kim C.-H., Chung I.-J., Lee S., Kim H.-R., Jun C.-D. 2022. Trogocytic-molting of T-cell microvilli controls T-cell clonal expansion. bioRxiv. 2022.05.03.490404. https://doi.org/10.1101/2022.05.03.490404

Miyake K., Shiozawa N., Nagao T., Yoshikawa S., Yam-anishi Y., Karasuyama H. 2017. Trogocytosis of peptide–MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc. Natl. Acad. Sci. USA. 114 (5), 1111–1116. https://doi.org/10.1073/pnas.1615973114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li G., Bethune M.T., Wong S., Joglekar A.V., Leonard M.T., Wang J.K., Kim J.T., Cheng D., Peng S., Zaretsky J.M., Su Y., Luo Y., Heath J.R., Ribas A., Witte O.N., Baltimore D. 2019. T cell antigen discovery via trogocytosis. Nat. Methods. 16 (2), 183–190. https://doi.org/10.1038/s41592-018-0305-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ochs J., Nissimov N., Torke S., Freier M., Grondey K., Koch J., Klein M., Feldmann L., Gudd C., Bopp T., Häusser-Kinzel S., Weber M.S. 2022. Proinflammatory CD20+ T cells contribute to CNS-directed autoimmunity. Sci. Transl. Med. 14 (638), eabi4632. https://doi.org/10.1126/scitranslmed.abi4632

Lee A.Y.S. 2022. CD20+ T cells: An emerging T cell subset in human pathology. Inflamm. Res. 71 (10), 1181–1189. https://doi.org/10.1007/s00011-022-01622-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kläsener K., Jellusova J., Andrieux G., Salzer U., Böhler C., Steiner S.N., Albinus J.B., Cavallari M., Süß B., Voll R.E., Boerries M., Wollscheid B., Reth M. 2021. CD20 as a gatekeeper of the resting state of human B cells. Proc. Natl. Acad. Sci. USA. 118 (7), e2021342118. https://doi.org/10.1073/pnas.2021342118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen P.A., Cohen P.J., Rosenberg S.A., Mulé J.J. 1994. CD4+ T-Cells from mice immunized to syngeneic sarcomas recognize distinct, non-shared tumor antigens. Cancer Res. 54 (4), 1055–1058.

CAS  PubMed  Google Scholar 

Roche P.A., Furuta K. 2015. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15 (4), 203–216. https://doi.org/10.1038/nri3818

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melief C.J.M., van der Burg S.H. 2008. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer. 8 (5), 351–360. https://doi.org/10.1038/nrc2373

Article  CAS  PubMed  Google Scholar 

Zorko M., Jones S., Langel Ü. 2022. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv. Drug Deliv. Rev. 180, 114044. https://doi.org/10.1016/j.addr.2021.114044

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif