Groot A.S.D., Moise L., Terry F., Gutierrez A.H., Hindocha P., Richard G., Hoft D.F., Ross T.M., Noe A.R., Takahashi Y., Kotraiah V., Silk S.E., Nielsen C.M., Minassian A.M., Ashfield R., Ardito M., Draper S.J., Martin W.D. 2020. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools. Front. Immunol. 11, 442. https://doi.org/10.3389/fimmu.2020.00442
Article CAS PubMed PubMed Central Google Scholar
Pétremand R., Chiffelle J., Bobisse S., Perez M.A.S., Schmidt J., Arnaud M., Barras D., Lozano-Rabella M., Genolet R., Sauvage C., Saugy D., Michel A., Huguenin-Bergenat A.-L., Capt C., Moore J.S., D. Vito C., Labidi-Galy S.I., Kandalaft L.E., Laniti D.D., Bassani-Sternberg M., Oliveira G., Wu C.J., Coukos G., Zoete V., Harari A. 2024. Identification of clinically relevant T cell receptors for personalized T cell therapy using combinatorial algorithms. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02232-0
Quah B.J.C., Parish C.R. 2010. The use of carboxyfluorescein diacetate succinimidyl ester (CFSE) to monitor lymphocyte proliferation. J. Vis. Exp. (44), 2259. https://doi.org/10.3791/2259
Yang X., Garner L.I., Zvyagin I.V., Paley M.A., Komech E.A., Jude K.M., Zhao X., Fernandes R.A., Hassman L.M., Paley G.L., Savvides C.S., Brackenridge S., Quastel M.N., Chudakov D.M., Bowness P., Yokoyama W.M., McMichael A.J., Gillespie G.M., Garcia K.C. 2022. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature. 612 (7941), 771–777. https://doi.org/10.1038/s41586-022-05501-7
Article CAS PubMed PubMed Central Google Scholar
Saggau C., Bacher P., Esser D., Rasa M., Meise S., Mohr N., Kohlstedt N., Hutloff A., Schacht S.-S., Dargvainiene J., Martini G.R., Stürner K.H., Schröder I., Markewitz R., Hartl J., Hastermann M., Duchow A., Schindler P., Becker M., Bautista C., Gottfreund J., Walter J., Polansky J.K., Yang M., Naghavian R., Wendorff M., Schuster E.-M., Dahl A., Petzold A., Reinhardt S., Franke A., Wieczorek M., Henschel L., Berger D., Heine G., Holtsche M., Häußler V., Peters C., Schmidt E., Fillatreau S., Busch D.H., Wandinger K.-P., Schober K., Martin R., Paul F., Leypoldt F., Scheffold A. 2024. Autoantigen-specific CD4+ T cells acquire an exhausted phenotype and persist in human antigen-specific autoimmune diseases. Immunity. 57 (10), 2416–2432.e8. https://doi.org/10.1016/j.immuni.2024.08.005
Article CAS PubMed Google Scholar
Greenberg P.D., Müll M.W. 2014. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells, Nat. Protoc. 9 (4), 950–966. https://doi.org/10.1038/nprot.2014.064
Article CAS PubMed PubMed Central Google Scholar
Ayaz-Guner S., Acar M.B., Boyvat D., Guner H., Bozalan H., Güzel M., Yıldır S.K., Altınsoy N., Fındık F., Karakükçü M., Özcan S. 2022. Protocol for cell surface biotinylation of magnetic labeled and captured human peripheral blood mononuclear cells. STAR Protoc. 3 (4), 101863. https://doi.org/10.1016/j.xpro.2022.101863
Article CAS PubMed PubMed Central Google Scholar
Attaf M., Roider J., Malik A., Rafael C.R., Dolton G., Prendergast A.J., Leslie A., Ndung’u T., Kløverpris H.N., Sewell A.K., Goulder P.J. 2020. Cytomegalovirus-mediated T cell receptor repertoire perturbation is present in early life. Front. Immunol. 11, 1587. https://doi.org/10.3389/fimmu.2020.01587
Article CAS PubMed PubMed Central Google Scholar
Luo X., Meng Q., Rao M., Liu Z., Paraschoudi G., Dodoo E., Maeurer M. 2018. The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology. 155 (3), 294–308. https://doi.org/10.1111/imm.12991
Article CAS PubMed PubMed Central Google Scholar
Nakayama M., Hori A., Toyoura S., Yamaguchi S.-I. 2021. Shaping of T cell functions by trogocytosis. Cells. 10 (5), 1155. https://doi.org/10.3390/cells10051155
Article CAS PubMed PubMed Central Google Scholar
van den Berg S.P.H., Derksen L.Y., Drylewicz J., Nanlohy N.M., Beckers L., Lanfermeijer J., Gessel S.N., Vos M., Otto S.A., de Boer R.J., Tesselaar K., Borghans J.A.M., van Baarle D. 2021. Quantification of T-cell dynamics during latent cytomegalovirus infection in humans. PLoS Pathog. 17 (12), e1010152. https://doi.org/10.1371/journal.ppat.1010152
Article CAS PubMed PubMed Central Google Scholar
Daubeuf S., Puaux A.-L., Joly E., Hudrisier D. 2006. A simple trogocytosis-based method to detect, quantify, characterize and purify antigen-specific live lymphocytes by flow cytometry, via their capture of membrane fragments from antigen-presenting cells. Nat. Protoc. 1 (6), 2536–2542. https://doi.org/10.1038/nprot.2006.400
Article CAS PubMed Google Scholar
Park J.-S., Kim J.-H., Soh W.-C., Lee K.-S., Kim C.-H., Chung I.-J., Lee S., Kim H.-R., Jun C.-D. 2022. Trogocytic-molting of T-cell microvilli controls T-cell clonal expansion. bioRxiv. 2022.05.03.490404. https://doi.org/10.1101/2022.05.03.490404
Miyake K., Shiozawa N., Nagao T., Yoshikawa S., Yam-anishi Y., Karasuyama H. 2017. Trogocytosis of peptide–MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc. Natl. Acad. Sci. USA. 114 (5), 1111–1116. https://doi.org/10.1073/pnas.1615973114
Article CAS PubMed PubMed Central Google Scholar
Li G., Bethune M.T., Wong S., Joglekar A.V., Leonard M.T., Wang J.K., Kim J.T., Cheng D., Peng S., Zaretsky J.M., Su Y., Luo Y., Heath J.R., Ribas A., Witte O.N., Baltimore D. 2019. T cell antigen discovery via trogocytosis. Nat. Methods. 16 (2), 183–190. https://doi.org/10.1038/s41592-018-0305-7
Article CAS PubMed PubMed Central Google Scholar
Ochs J., Nissimov N., Torke S., Freier M., Grondey K., Koch J., Klein M., Feldmann L., Gudd C., Bopp T., Häusser-Kinzel S., Weber M.S. 2022. Proinflammatory CD20+ T cells contribute to CNS-directed autoimmunity. Sci. Transl. Med. 14 (638), eabi4632. https://doi.org/10.1126/scitranslmed.abi4632
Lee A.Y.S. 2022. CD20+ T cells: An emerging T cell subset in human pathology. Inflamm. Res. 71 (10), 1181–1189. https://doi.org/10.1007/s00011-022-01622-x
Article CAS PubMed PubMed Central Google Scholar
Kläsener K., Jellusova J., Andrieux G., Salzer U., Böhler C., Steiner S.N., Albinus J.B., Cavallari M., Süß B., Voll R.E., Boerries M., Wollscheid B., Reth M. 2021. CD20 as a gatekeeper of the resting state of human B cells. Proc. Natl. Acad. Sci. USA. 118 (7), e2021342118. https://doi.org/10.1073/pnas.2021342118
Article CAS PubMed PubMed Central Google Scholar
Cohen P.A., Cohen P.J., Rosenberg S.A., Mulé J.J. 1994. CD4+ T-Cells from mice immunized to syngeneic sarcomas recognize distinct, non-shared tumor antigens. Cancer Res. 54 (4), 1055–1058.
Roche P.A., Furuta K. 2015. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15 (4), 203–216. https://doi.org/10.1038/nri3818
Article CAS PubMed PubMed Central Google Scholar
Melief C.J.M., van der Burg S.H. 2008. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer. 8 (5), 351–360. https://doi.org/10.1038/nrc2373
Article CAS PubMed Google Scholar
Zorko M., Jones S., Langel Ü. 2022. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv. Drug Deliv. Rev. 180, 114044. https://doi.org/10.1016/j.addr.2021.114044
Comments (0)