Synthesis of New Uracil Derivatives with Antiviral and Anticancer Potential

Jordheim L.P., Durantel D., Zoulim F., Dumontet C. 2013. Advances in the development of nucleoside and nucleotide analogues for cancer and viral disease. Nat. Rev. Drug Discov. 12 (6), 447–464. https://doi.org/10.1038/nrd4010

Article  CAS  PubMed  Google Scholar 

Seley-Radtke K.L., Yates M.K. 2018. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part I: Early structural modifications to the nucleoside scaffold. Antiviral Res. 154, 66–86. https://doi.org/10.1016/j.antiviral.2018.04.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yates M.K., Seley-Radtke K.L. 2019. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral research. 162, 5–21. https://doi.org/10.1016/j.antiviral.2018.11.016

Article  CAS  PubMed  Google Scholar 

Longley D.B., Harkin D.P., Johnston P.G. 2003. 5‑Fluorouracil: Mechanisms of action and clinical strategies. Nature Rev. Cancer. 3 (5), 330–338. https://doi.org/10.1038/nrc1074

Article  CAS  Google Scholar 

Alexandrova L.A., Khandazhinskaya A.L., Matyugina E.S., Makarov D.A., Kochetkov S.N. 2022. Analogues of pyrimidine nucleosides as mycobacteria growth inhibitors. Microorganisms. 10, 1299. https://doi.org/10.3390/microorganisms10071299

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomson J.M., Lamont I.L. 2019. Nucleoside analogues as antibacterial agents. Front. Microbiol. 10. 952. https://doi.org/10.3389/fmicb.2019.00952

Article  PubMed  PubMed Central  Google Scholar 

Ali J.A., Tagoe D.N., Munday J.C., Donachie A., Morrison L.J., de Koning H.P. 2013. Pyrimidine biosynthesis is not an essential function for Trypanosoma brucei bloodstream forms. PloS One. 8 (3), e58034. https://doi.org/10.1371/journal.pone.0058034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campagnaro G.D., de Koning H.P. 2020. Purine and pyrimidine transporters of pathogenic protozoa—conduits for therapeutic agents. Medicinal Res. Rev. 40 (5), 1679–1714. https://doi.org/10.1002/med.21667

Article  CAS  Google Scholar 

De Clercq E. 2019. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J., 14 (22), 3962–3968. https://doi.org/10.1002/asia.201900841

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Clercq E., Li G. 2016. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 29 (3), 695–747. https://doi.org/10.1128/CMR.00102-15

Article  PubMed  PubMed Central  Google Scholar 

Pomerantz R.J., Schooley R.T. 1987. Therapy of human immunodeficiency virus infections. Clin. Lab. Med. 7 (4), 793–813.

Article  CAS  PubMed  Google Scholar 

Balzarini J. 1994. Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives. Pharmacy World & Science: PWS. 16 (2), 113–126. https://doi.org/10.1007/BF01880662

Article  CAS  Google Scholar 

Schalm S.W., de Man R.A., Heijtink R.A., Niesters H.G. 1995. New nucleoside analogues for chronic hepatitis. J. Hepatol. 22 (1), 52–56.

CAS  PubMed  Google Scholar 

Sun, S., Yang, Q., Sheng, Y., Fu, Y., Sun, C., Deng, C. 2021. Investigational drugs with dual activity against HBV and HIV (Review). Exper. Ther. Medicine. 21 (1), 35. https://doi.org/10.3892/etm.2020.9467

Article  CAS  Google Scholar 

Richman D.D. 2001. Antiretroviral activity of emtricitabine, a potent nucleoside reverse transcriptase inhibitor. Antiviral Therapy. 6 (2), 83–88.

Article  CAS  PubMed  Google Scholar 

Hirsch M.S., Schooley R.T. 1983. Drug therapy. Treatment of herpesvirus infections. New Engl. J. Med. 309 (16), 963–970. https://doi.org/10.1056/NEJM198310203091607

Article  CAS  PubMed  Google Scholar 

Lea A.P., Bryson H.M. 1996. Cidofovir. Drugs. 52 (2), 225–231. https://doi.org/10.2165/00003495-199652020-00006

Article  CAS  PubMed  Google Scholar 

Khandazhinskaya A., Matyugina E., Novikov M. 2021. Chapter Six – Uracil derivatives as non-nucleoside inhibitors of viral infections. Annu. Rep. Med. Chem. 57, 175 – 238. https://doi.org/10.1016/bs.armc.2021.08.001

Article  CAS  Google Scholar 

Seley K.L., L. Zhang A. Hagos. 2001. Flex-nucleoside analogues – Novel therapeutics against filoviruses. Org. Lett. 3 (20), 3209–3210. https://doi.org/10.1016/j.bmcl.2017.04.069

Article  CAS  PubMed  Google Scholar 

Yates M.K., Raje M.R., Chatterjee P., et al. 2017. Flex-nucleoside analogues – Novel therapeutics against filoviruses. Bioorg. Med. Chem. Lett. 27, 2800–2802. https://doi.org/10.1016/j.bmcl.2017.04.069

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thames J.E., Waters C.D., 3rd, Valle C., Bassetto M., Aouadi W., Martin B., Selisko B., Falat A., Coutard B., Brancale A., Canard B., Decroly E., Seley-Radtke K.L. 2020. Synthesis and biological evaluation of novel flexible nucleoside analogues that inhibit flavivirus replication in vitro. Bioorg. Med. Chem. 28 (22), 115713. https://doi.org/10.1016/j.bmc.2020.115713

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matyugina E., Petushkov I., Surzhikov S., Kezin V., Maslova A., Ivanova O., Smirnova O., Kirillov I., Fedyakina I., Kulbachinskiy A., Kochetkov S., Khandazhinskaya A. 2023. Nucleoside analogs that inhibit SARS-CoV-2 replication by blocking interaction of virus polymerase with RNA. Intern. J. Molec. Sci. 24 (4), 3361. https://doi.org/10.3390/ijms24043361

Article  CAS  Google Scholar 

Comments (0)

No login
gif