Liang Z., Watson G.D.R., Alloway K.D., Lee G., Neuberger T., Zhang N. 2015. Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats. NeuroImage. 117, 114–123. https://doi.org/10.1016/j.neuroimage.2015.05.036
Busskamp V., Duebel J., Balya D., Fradot M., Viney T.J., Siegert S., Groner A.C., Cabuy E., Forster V., Seeliger M., Biel M., Humphries P., Paques M., Mohand-Said S., Trono D., Deisseroth K., Sahel J.A., Picaud S., Roska B. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 329 (5990), 413–417. https://doi.org/10.1126/science.1190897
Article CAS PubMed Google Scholar
Busskamp V., Picaud S., Sahel J.A., Roska B. 2012. Optogenetic therapy for retinitis pigmentosa. Gene Therapy. 19 (2), 169–175. https://doi.org/10.1038/gt.2011.155
Article CAS PubMed Google Scholar
Sahel J.-A., Roska B. 2013. Gene therapy for blindness. Ann. Rev. Neurosci. 36 (1), 467–488. https://doi.org/10.1146/annurev-neuro-062012-170304
Article CAS PubMed Google Scholar
Jeschke M., Moser T. 2015. Considering optogenetic stimulation for cochlear implants. Hearing Res. 322, 224–234. https://doi.org/10.1016/j.heares.2015.01.005
Keppeler D., Merino R.M., Lopez De La Morena D., Bali B., Huet A.T., Gehrt A., Wrobel C., Subramanian S., Dombrowski T., Wolf F., Rankovic V., Neef A., Moser T. 2018. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J. 37 (24), e99649. https://doi.org/10.15252/embj.201899649
Article CAS PubMed PubMed Central Google Scholar
Keppeler D., Schwaerzle M., Harczos T., Jablonski L., Dieter A., Wolf B., Ayub S., Vogl C., Wrobel C., Hoch G., Abdellatif K., Jeschke M., Rankovic V., Paul O., Ruther P., Moser T. 2020. Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. Science Transl. Medicine. 12 (553), eabb8086. https://doi.org/10.1126/scitranslmed.abb8086
Namburi P., Beyeler A., Yorozu S., Calhoon G.G., Halbert S.A., Wichmann R., Holden S.S., Mertens K.L., Anahtar M., Felix-Ortiz A.C., Wickersham I.R., Gray J.M., Tye K.M. 2015. A circuit mechanism for differentiating positive and negative associations. Nature. 520 (7549), 675–678. https://doi.org/10.1038/nature14366
Article CAS PubMed PubMed Central Google Scholar
Chen S., Weitemier A.Z., Zeng X., He L., Wang X., Tao Y., Huang A.J.Y., Hashimotodani Y., Kano M., Iwasaki H., Parajuli L.K., Okabe S., Teh D.B.L., All A.H., Tsutsui-Kimura I., Tanaka K.F., Liu X., McHugh T.J. 2018. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science. 359 (6376), 679–684. https://doi.org/10.1126/science.aaq1144
Article CAS PubMed Google Scholar
Vlasova A.D., Bukhalovich S.M., Bagaeva D.F., Polyakova A.P., Ilyinsky N.S., Nesterov S.V., Tsybrov F.M., Bogorodskiy A.O., Zinovev E.V., Mikhailov A.E., Vlasov A.V., Kuklin A.I., Borshchevskiy V.I., Bamberg E., Uversky V.N., Gordeliy V.I. 2024. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem. Soc. Rev. 53 (7), 3327–3349. https://doi.org/10.1039/D3CS00699A
Article CAS PubMed Google Scholar
Casey J.R., Grinstein S., Orlowski J. 2010. Sensors and regulators of intracellular pH. Nature Rev. Mol. Cell Biol. 11 (1), 50–61. https://doi.org/10.1038/nrm2820
Chow B.Y., Han X., Dobry A.S., Qian X., Chuong A.S., Li M., Henninger M.A., Belfort G.M., Lin Y., Monahan P.E., Boyden E.S. 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 463 (7277), 98–102. https://doi.org/10.1038/nature08652
Article CAS PubMed PubMed Central Google Scholar
El-Gaby M., Zhang Y., Wolf K., Schwiening C.J., Paulsen O., Shipton O.A. 2016. Archaerhodopsin selectively and reversibly silences synaptic transmission through altered pH. Cell Reports. 16 (8), 2259–2268. https://doi.org/10.1016/j.celrep.2016.07.057
Article CAS PubMed Google Scholar
Rost B.R., Schneider F., Grauel M.K., Wozny C., Bentz C.G., Blessing A., Rosenmund T., Jentsch T.J., Schmitz D., Hegemann P., Rosenmund C. 2015. Optogenetic acidification of synaptic vesicles and lysosomes. Nature Neurosci. 18 (12), 1845–1852. https://doi.org/10.1038/nn.4161
Article CAS PubMed Google Scholar
Beppu K., Sasaki T., Tanaka K.F., Yamanaka A., Fukazawa Y., Shigemoto R., Matsui K. 2014. Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron. 81 (2), 314–320. https://doi.org/10.1016/j.neuron.2013.11.011
Article CAS PubMed Google Scholar
Nakao S., Kojima K., Sudo Y. 2022. Phototriggered apoptotic cell death (PTA) using the light-driven outward proton pump rhodopsin archaerhodopsin-3. J. Amer. Chem. Soc. 144 (9), 3771–3775. https://doi.org/10.1021/jacs.1c12608
Donahue C.E.T., Siroky M.D., White K.A. 2021. An optogenetic tool to raise intracellular pH in single cells and drive localized membrane dynamics. J. Amer. Chem. Soc. 143 (45), 18877–18887. https://doi.org/10.1021/jacs.1c02156
McBride H.M., Neuspiel M., Wasiak S. 2006. Mitochondria: More than just a powerhouse. Curr. Biol. 16 (14), R551–R560. https://doi.org/10.1016/j.cub.2006.06.054
Article CAS PubMed Google Scholar
Takahashi A., Zhang Y., Centonze V.E., Herman B. 2001. Measurement of mitochondrial pH in situ. BioTechniques. 30 (4), 804–815. https://doi.org/10.2144/01304rv01
Article CAS PubMed Google Scholar
Lagadic-Gossmann D., Huc L., Lecureur V. 2004. Alterations of intracellular pH homeostasis in apoptosis: Origins and roles. Cell Death & Differentiation. 11 (9), 953–961. https://doi.org/10.1038/sj.cdd.4401466
Matsuyama S., Reed J.C. 2000. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death & Differentiation. 7 (12), 1155–1165. https://doi.org/10.1038/sj.cdd.4400779
Berezhnov A.V., Soutar M.P.M., Fedotova E.I., Frolova M.S., Plun-Favreau H., Zinchenko V.P., Abramov A.Y. 2016. Intracellular pH modulates autophagy and mitophagy. J. Biol. Chem. 291 (16), 8701–8708. https://doi.org/10.1074/jbc.M115.691774
Article CAS PubMed PubMed Central Google Scholar
Javadov S. 2015. The calcium-ROS-pH triangle and mitochondrial permeability transition: Challenges to mimic cardiac ischemia-reperfusion. Front. Physiol. 6. https://doi.org/10.3389/fphys.2015.00083
Aklima J., Onojima T., Kimura S., Umiuchi K., Shibata T., Kuraoka Y., Oie Y., Suganuma Y., Ohta Y. 2021. Effects of matrix pH on spontaneous transient depolarization and reactive oxygen species production in mitochondria. Front. Cell Devel. Biol. 9, 692776. https://doi.org/10.3389/fcell.2021.692776
Cadenas S. 2018. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Rad. Biol. Med. 117, 76–89. https://doi.org/10.1016/j.freeradbiomed.2018.01.024
Article CAS PubMed Google Scholar
Newsholme P., Haber E.P., Hirabara S.M., Rebelato E.L.O., Procopio J., Morgan D., Oliveira-Emilio H.C., Carpinelli A.R., Curi R. 2007. Diabetes associated cell stress and dysfunction: Role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol. 583 (1), 9–24. https://doi.org/10.1113/jphysiol.2007.135871
Article CAS PubMed PubMed Central Google Scholar
Harguindey S., Stanciu D., Devesa J., Alfarouk K., Cardone R.A., Polo Orozco J.D., Devesa P., Rauch C., Orive G., Anitua E., Roger S., Reshkin S.J. 2017. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin. Cancer Biol. 43, 157–179. https://doi.org/10.1016/j.semcancer.2017.02.003
Article CAS PubMed Google Scholar
Ermakova Y.G., Pak V.V., Bogdanova Y.A., Kotlobay A.A., Yampolsky I.V., Shokhina A.G., Panova A.S., Marygin R.A., Staroverov D.B., Bilan D.S., Sies H., Belousov V.V. 2018. SypHer3s: A genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. Chem. Commun. 54 (23), 2898–2901. https://doi.org/10.1039/C7CC08740C
Pak V.V., Ezeriņa D., Lyublinskaya O.G., Pedre B., et al. 2020. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab. 31 (3), 642-653.e6. https://doi.org/10.1016/j.cmet.2020.02.003
Comments (0)