ROS Generation in Mitochondria and Cytosol during Optogenetic Cytosol Alkalization in Human Cells

Liang Z., Watson G.D.R., Alloway K.D., Lee G., Neuberger T., Zhang N. 2015. Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats. NeuroImage. 117, 114–123. https://doi.org/10.1016/j.neuroimage.2015.05.036

Article  PubMed  Google Scholar 

Busskamp V., Duebel J., Balya D., Fradot M., Viney T.J., Siegert S., Groner A.C., Cabuy E., Forster V., Seeliger M., Biel M., Humphries P., Paques M., Mohand-Said S., Trono D., Deisseroth K., Sahel J.A., Picaud S., Roska B. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 329 (5990), 413–417. https://doi.org/10.1126/science.1190897

Article  CAS  PubMed  Google Scholar 

Busskamp V., Picaud S., Sahel J.A., Roska B. 2012. Optogenetic therapy for retinitis pigmentosa. Gene Therapy. 19 (2), 169–175. https://doi.org/10.1038/gt.2011.155

Article  CAS  PubMed  Google Scholar 

Sahel J.-A., Roska B. 2013. Gene therapy for blindness. Ann. Rev. Neurosci. 36 (1), 467–488. https://doi.org/10.1146/annurev-neuro-062012-170304

Article  CAS  PubMed  Google Scholar 

Jeschke M., Moser T. 2015. Considering optogenetic stimulation for cochlear implants. Hearing Res. 322, 224–234. https://doi.org/10.1016/j.heares.2015.01.005

Article  Google Scholar 

Keppeler D., Merino R.M., Lopez De La Morena D., Bali B., Huet A.T., Gehrt A., Wrobel C., Subramanian S., Dombrowski T., Wolf F., Rankovic V., Neef A., Moser T. 2018. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J. 37 (24), e99649. https://doi.org/10.15252/embj.201899649

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keppeler D., Schwaerzle M., Harczos T., Jablonski L., Dieter A., Wolf B., Ayub S., Vogl C., Wrobel C., Hoch G., Abdellatif K., Jeschke M., Rankovic V., Paul O., Ruther P., Moser T. 2020. Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. Science Transl. Medicine. 12 (553), eabb8086. https://doi.org/10.1126/scitranslmed.abb8086

Namburi P., Beyeler A., Yorozu S., Calhoon G.G., Halbert S.A., Wichmann R., Holden S.S., Mertens K.L., Anahtar M., Felix-Ortiz A.C., Wickersham I.R., Gray J.M., Tye K.M. 2015. A circuit mechanism for differentiating positive and negative associations. Nature. 520 (7549), 675–678. https://doi.org/10.1038/nature14366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S., Weitemier A.Z., Zeng X., He L., Wang X., Tao Y., Huang A.J.Y., Hashimotodani Y., Kano M., Iwasaki H., Parajuli L.K., Okabe S., Teh D.B.L., All A.H., Tsutsui-Kimura I., Tanaka K.F., Liu X., McHugh T.J. 2018. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science. 359 (6376), 679–684. https://doi.org/10.1126/science.aaq1144

Article  CAS  PubMed  Google Scholar 

Vlasova A.D., Bukhalovich S.M., Bagaeva D.F., Polyakova A.P., Ilyinsky N.S., Nesterov S.V., Tsybrov F.M., Bogorodskiy A.O., Zinovev E.V., Mikhailov A.E., Vlasov A.V., Kuklin A.I., Borshchevskiy V.I., Bamberg E., Uversky V.N., Gordeliy V.I. 2024. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem. Soc. Rev. 53 (7), 3327–3349. https://doi.org/10.1039/D3CS00699A

Article  CAS  PubMed  Google Scholar 

Casey J.R., Grinstein S., Orlowski J. 2010. Sensors and regulators of intracellular pH. Nature Rev. Mol. Cell Biol. 11 (1), 50–61. https://doi.org/10.1038/nrm2820

Article  CAS  Google Scholar 

Chow B.Y., Han X., Dobry A.S., Qian X., Chuong A.S., Li M., Henninger M.A., Belfort G.M., Lin Y., Monahan P.E., Boyden E.S. 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 463 (7277), 98–102. https://doi.org/10.1038/nature08652

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Gaby M., Zhang Y., Wolf K., Schwiening C.J., Paulsen O., Shipton O.A. 2016. Archaerhodopsin selectively and reversibly silences synaptic transmission through altered pH. Cell Reports. 16 (8), 2259–2268. https://doi.org/10.1016/j.celrep.2016.07.057

Article  CAS  PubMed  Google Scholar 

Rost B.R., Schneider F., Grauel M.K., Wozny C., Bentz C.G., Blessing A., Rosenmund T., Jentsch T.J., Schmitz D., Hegemann P., Rosenmund C. 2015. Optogenetic acidification of synaptic vesicles and lysosomes. Nature Neurosci. 18 (12), 1845–1852. https://doi.org/10.1038/nn.4161

Article  CAS  PubMed  Google Scholar 

Beppu K., Sasaki T., Tanaka K.F., Yamanaka A., Fukazawa Y., Shigemoto R., Matsui K. 2014. Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron. 81 (2), 314–320. https://doi.org/10.1016/j.neuron.2013.11.011

Article  CAS  PubMed  Google Scholar 

Nakao S., Kojima K., Sudo Y. 2022. Phototriggered apoptotic cell death (PTA) using the light-driven outward proton pump rhodopsin archaerhodopsin-3. J. Amer. Chem. Soc. 144 (9), 3771–3775. https://doi.org/10.1021/jacs.1c12608

Article  CAS  Google Scholar 

Donahue C.E.T., Siroky M.D., White K.A. 2021. An optogenetic tool to raise intracellular pH in single cells and drive localized membrane dynamics. J. Amer. Chem. Soc. 143 (45), 18877–18887. https://doi.org/10.1021/jacs.1c02156

Article  CAS  Google Scholar 

McBride H.M., Neuspiel M., Wasiak S. 2006. Mitochondria: More than just a powerhouse. Curr. Biol. 16 (14), R551–R560. https://doi.org/10.1016/j.cub.2006.06.054

Article  CAS  PubMed  Google Scholar 

Takahashi A., Zhang Y., Centonze V.E., Herman B. 2001. Measurement of mitochondrial pH in situ. BioTechniques. 30 (4), 804–815. https://doi.org/10.2144/01304rv01

Article  CAS  PubMed  Google Scholar 

Lagadic-Gossmann D., Huc L., Lecureur V. 2004. Alterations of intracellular pH homeostasis in apoptosis: Origins and roles. Cell Death & Differentiation. 11 (9), 953–961. https://doi.org/10.1038/sj.cdd.4401466

Article  CAS  Google Scholar 

Matsuyama S., Reed J.C. 2000. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death & Differentiation. 7 (12), 1155–1165. https://doi.org/10.1038/sj.cdd.4400779

Article  CAS  Google Scholar 

Berezhnov A.V., Soutar M.P.M., Fedotova E.I., Frolova M.S., Plun-Favreau H., Zinchenko V.P., Abramov A.Y. 2016. Intracellular pH modulates autophagy and mitophagy. J. Biol. Chem. 291 (16), 8701–8708. https://doi.org/10.1074/jbc.M115.691774

Article  CAS  PubMed  PubMed Central  Google Scholar 

Javadov S. 2015. The calcium-ROS-pH triangle and mitochondrial permeability transition: Challenges to mimic cardiac ischemia-reperfusion. Front. Physiol. 6. https://doi.org/10.3389/fphys.2015.00083

Aklima J., Onojima T., Kimura S., Umiuchi K., Shibata T., Kuraoka Y., Oie Y., Suganuma Y., Ohta Y. 2021. Effects of matrix pH on spontaneous transient depolarization and reactive oxygen species production in mitochondria. Front. Cell Devel. Biol. 9, 692776. https://doi.org/10.3389/fcell.2021.692776

Article  Google Scholar 

Cadenas S. 2018. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Rad. Biol. Med. 117, 76–89. https://doi.org/10.1016/j.freeradbiomed.2018.01.024

Article  CAS  PubMed  Google Scholar 

Newsholme P., Haber E.P., Hirabara S.M., Rebelato E.L.O., Procopio J., Morgan D., Oliveira-Emilio H.C., Carpinelli A.R., Curi R. 2007. Diabetes associated cell stress and dysfunction: Role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol. 583 (1), 9–24. https://doi.org/10.1113/jphysiol.2007.135871

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harguindey S., Stanciu D., Devesa J., Alfarouk K., Cardone R.A., Polo Orozco J.D., Devesa P., Rauch C., Orive G., Anitua E., Roger S., Reshkin S.J. 2017. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin. Cancer Biol. 43, 157–179. https://doi.org/10.1016/j.semcancer.2017.02.003

Article  CAS  PubMed  Google Scholar 

Ermakova Y.G., Pak V.V., Bogdanova Y.A., Kotlobay A.A., Yampolsky I.V., Shokhina A.G., Panova A.S., Marygin R.A., Staroverov D.B., Bilan D.S., Sies H., Belousov V.V. 2018. SypHer3s: A genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. Chem. Commun. 54 (23), 2898–2901. https://doi.org/10.1039/C7CC08740C

Article  CAS  Google Scholar 

Pak V.V., Ezeriņa D., Lyublinskaya O.G., Pedre B., et al. 2020. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab. 31 (3), 642-653.e6. https://doi.org/10.1016/j.cmet.2020.02.003

Article 

Comments (0)

No login
gif