https://world-heart-federation.org/news/deaths-from-cardiovascular-disease-surged-60-globally-over-the-last-30-years-report/ (accessed on 29th April 2024).
Saunders, H., Harris, D. & Chirilă, R. M. Pharmacogenomics: introduction and use in clinical practice. Rom. J. Intern. Med. 58, 69–74 (2020).
Castrichini, M., Luzum, J. A. & Pereira, N. Pharmacogenetics of antiplatelet therapy. Annu. Rev. Pharmacol. Toxicol. 63, 211–229 (2023).
Galli, M. et al. Genetic testing in patients undergoing percutaneous coronary intervention: rationale, evidence and practical recommendations. Expert Rev. Clin. Pharmacol. 14, 963–978 (2021).
CAS PubMed PubMed Central Google Scholar
Falco, L. et al. Antioxidant properties of oral antithrombotic therapies in atherosclerotic disease and atrial fibrillation. Antioxidants 12, 1185 (2023).
CAS PubMed PubMed Central Google Scholar
Akkaif, M. A. et al. The role of genetic polymorphism and other factors on clopidogrel resistance (CR) in an Asian population with coronary heart disease (CHD). Molecules 26, 1987 (2021).
CAS PubMed PubMed Central Google Scholar
Saiz-Rodríguez, M. et al. Influence of CYP450 enzymes, CES1, PON1, ABCB1, and P2RY12 polymorphisms on clopidogrel response in patients subjected to a percutaneous neurointervention. Clin. Ther. 41, 1199–1212.e1192 (2019).
Lopez, J. et al. Role of genetic polymorphisms in clopidogrel response variability: a systematic review. Open Heart 10, e002436 (2023).
PubMed PubMed Central Google Scholar
Lee, C. R. et al. Clinical pharmacogenetics implementation consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin. Pharmacol. Ther.112, 959–967 (2022).
Ellithi, M., Baye, J. & Wilke, R. A. CYP2C19 genotype-guided antiplatelet therapy: promises and pitfalls. Pharmacogenomics 21, 889–897 (2020).
CAS PubMed PubMed Central Google Scholar
Su, Q. et al. Association of CYP2C19 polymorphism with clopidogrel resistance in patients with acute coronary syndrome in China. Med. Sci. Monit.25, 7138 (2019).
CAS PubMed PubMed Central Google Scholar
Zhuo, Z. -l. et al. Association between CYP2C19 and ABCB1 polymorphisms and clopidogrel resistance in clopidogrel-treated Chinese patients. Anatol. J. Cardiol. 19, 123 (2018).
CAS PubMed PubMed Central Google Scholar
Peng, W., Shi, X., Xu, X. & Lin, Y. Both CYP2C19 and PON1 Q192R genotypes influence platelet response to clopidogrel by thrombelastography in patients with acute coronary syndrome. Cardiovasc. Ther. 2019, 3470145 (2019).
PubMed PubMed Central Google Scholar
Liu, G., Yang, S. & Chen, S. The correlation between recurrent risk and CYP2C19 gene polymorphisms in patients with ischemic stroke treated with clopidogrel for prevention. Medicine 99, e19143 (2020).
CAS PubMed PubMed Central Google Scholar
Li, Y.-J. et al. Association between CYP2C19 polymorphisms and clinical outcomes in patients undergoing stent procedure for cerebral artery stenosis. Sci. Rep. 11, 5974 (2021).
CAS PubMed PubMed Central Google Scholar
Biswas, M., Sukasem, C., Khatun Kali, M. S. & Ibrahim, B. Effects of the CYP2C19 LoF allele on major adverse cardiovascular events associated with clopidogrel in acute coronary syndrome patients undergoing percutaneous coronary intervention: a meta-analysis. Pharmacogenomics 23, 207–220 (2022).
Xi, Z. et al. CYP2C19 genotype and adverse cardiovascular outcomes after stent implantation in clopidogrel-treated Asian populations: a systematic review and meta-analysis. Platelets 30, 229–240 (2019).
Sibbing, D. et al. Cytochrome 2C19* 17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121, 512–518 (2010).
Lewis, J. P. et al. Pharmacogenomic polygenic response score predicts ischaemic events and cardiovascular mortality in clopidogrel-treated patients. Eur. Heart J. Cardiovasc. Pharmacother. 6, 203–210 (2020).
Lee, C. R. et al. Impact of the CYP2C19* 17 allele on outcomes in patients receiving genotype-guided antiplatelet therapy after percutaneous coronary intervention. Clin. Pharmacol. Ther. 109, 705–715 (2021).
Dehbozorgi, M. et al. Prevalence of the CYP2C19* 2 (681 G> A),* 3 (636 G> A) and* 17 (‑806 C> T) alleles among an Iranian population of different ethnicities. Mol. Med. Rep. 17, 4195–4202 (2018).
CAS PubMed PubMed Central Google Scholar
Yamada, H. et al. CYP2D6 and CYP2C19 genotypes in an elderly Swedish population. Eur. J. Clin. Pharmacol. 54, 479–481 (1998).
Brockmöller, J. J., Rost, K., Gross, D., Schenkel, A. & Roots, I. Phenotyping of CYP2C19 with enantiospecific HPLCquantification of R-and S-mephenytoin and comparison with the intron4/exon5 G→ A-splice site mutation. Pharmacogenetics 5, 80–88 (1995).
Persson, I., Aklillu, E., Rodrigues, F., Bertilsson, L. & Ingelman-Sundberg, M. S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics 6, 521–526 (1996).
Dandara, C. et al. Genetic polymorphism of CYP2D6 and CYP2C19 in east-and southern African populations including psychiatric patients. Eur. J. Clin. Pharmacol. 57, 11–17 (2001).
Goldstein, J. A. et al. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7, 59–64 (1997).
Sistonen, J. et al. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet. Genomics 19, 170–179 (2009).
Jurima-Romet, M. et al. CYP2C19 genotyping and associated mephenytoin hydroxylation polymorphism in a Canadian Inuit population. Pharmacogenetics 6, 329–339 (1996).
Bathum, L., Andersen-Ranberg, K., Boldsen, J., Brøsen, K. & Jeune, B. Genotypes for the cytochrome P450 enzymes CYP2D6 and CYP2C19 in human longevity Role of CYP2D6 and CYP2C19 in longevity: role of CYP2D6 and CYP2C19 in longevity. Eur. J. Clin. Pharmacol. 54, 427–430 (1998).
Herrlin, K. et al. Bantu Tanzanians have a decreased capacity to metabolize omeprazole and mephenytoin in relation to their CYP2C19 genotype. Clin. Pharmacol. Ther. 64, 391–401 (1998).
Pedersen, R. S. et al. Linkage disequilibrium between the CYP2C19* 17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur. J. Clin. Pharmacol. 66, 1199–1205 (2010).
Hamdy, S. I. et al. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br. J. Clin. Pharmacol. 53, 596–603 (2002).
CAS PubMed PubMed Central Google Scholar
Hsu, H.-L., Woad, K. J., Woodfield, D. G. & Helsby, N. A. A high incidence of polymorphic CYP2C19 variants in archival blood samples from Papua New Guinea. Hum. Genomics 3, 1–7 (2008).
Rudberg, I., Mohebi, B., Hermann, M., Refsum, H. & Molden, E. Impact of the ultrarapid CYP2C19* 17 allele on serum concentration of escitalopram in psychiatric patients. Clin. Pharmacol. Ther. 83, 322–327 (2008).
Kearns, G. L., Leeder, J. S. & Gaedigk, A. Impact of the CYP2C19* 17 allele on the pharmacokinetics of omeprazole and pantoprazole in children: evidence for a differential effect. Drug Metab. Dispos. 38, 894–897 (2010).
CAS PubMed PubMed Central Google Scholar
Sim, S. C. et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 79, 103–113 (2006).
Kim, K. A., Song, W. K., Kim, K. R. & Park, J. Y. Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19* 2, CYP2C19* 3, and CYP2C19* 17 alleles. J. Clin. Pharm. Ther. 35, 697–703 (2010).
Sugimoto, K., Uno, T., Yamazaki, H. & Tateishi, T. Limited frequency of the CYP2C19* 17 allele and its minor role in a Japanese population. Br. J. Clin. Pharmacol. 65, 437–439 (2008).
Comments (0)