Skeletal muscle atrophy in pulmonary arterial hypertension: potential mechanisms and effects of physical exercise

Cullivan S, Higgins M, Gaine S (2022) Diagnosis and management of pulmonary arterial hypertension. Breathe 18:220168. https://doi.org/10.1183/20734735.0168-2022

Article  PubMed  PubMed Central  Google Scholar 

Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M et al (2022) ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European society of cardiology (ESC) and the European respiratory society (ERS). Endorsed by the international society for heart and lung transplantation (ISHLT) and the European reference network on rare respiratory diseases (ERN-LUNG). Eur Heart J 43:3618–3731. https://doi.org/10.1093/eurheartj/ehac237

Article  CAS  PubMed  Google Scholar 

Thenappan T, Ormiston ML, Ryan JJ, Archer SL (2018) Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ j5492. https://doi.org/10.1136/bmj.j5492

Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF (2009) The right ventricle under pressure. Chest 135:794–804. https://doi.org/10.1378/chest.08-0492

Article  CAS  PubMed  Google Scholar 

Naeije R, Manes A (2014) The right ventricle in pulmonary arterial hypertension. Eur Respir Rev 23:476–487. https://doi.org/10.1183/09059180.00007414

Article  PubMed  PubMed Central  Google Scholar 

Sharifi Kia D, Kim K, Simon MA (2021) Current understanding of the right ventricle structure and function in pulmonary arterial hypertension. Front Physiol 12:641310. https://doi.org/10.3389/fphys.2021.641310

Article  PubMed  PubMed Central  Google Scholar 

Naeije R, Richter MJ, Rubin LJ (2022) The physiological basis of pulmonary arterial hypertension. Eur Respir J 59:2102334. https://doi.org/10.1183/13993003.02334-2021

Article  PubMed  PubMed Central  Google Scholar 

Matura LA, Fargo JD, Boyle K, Fritz JS, Smith KA, Mazurek JA et al (2022) Symptom phenotypes in pulmonary arterial hypertension: the PAH “symptome.” Pulm Circ 12:e12135. https://doi.org/10.1002/pul2.12135

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCollister D, Shaffer S, Badesch DB, Filusch A, Hunsche E, Schüler R et al (2016) Development of the pulmonary arterial hypertension-symptoms and impact (PAH-SYMPACT®) questionnaire: a new patient-reported outcome instrument for PAH. Respir Res 17:72. https://doi.org/10.1186/s12931-016-0388-6

Article  PubMed  PubMed Central  Google Scholar 

Fowler RM, Gain KR, Gabbay E (2012) Exercise intolerance in pulmonary arterial hypertension. Pulmonary Med 2012:1–10. https://doi.org/10.1155/2012/359204

Article  Google Scholar 

Malenfant S, Lebret M, Breton-Gagnon É, Potus F, Paulin R, Bonnet S et al (2021) Exercise intolerance in pulmonary arterial hypertension: insight into central and peripheral pathophysiological mechanisms. Eur Respir Rev 30:200284. https://doi.org/10.1183/16000617.0284-2020

Article  PubMed  PubMed Central  Google Scholar 

Potus F, Malenfant S, Graydon C, Mainguy V, Tremblay È, Breuils-Bonnet S et al (2014) Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. Am J Respir Crit Care Med 190:318–328. https://doi.org/10.1164/rccm.201402-0383OC

Article  CAS  PubMed  Google Scholar 

Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170. https://doi.org/10.1152/physiol.00041.2007

Article  CAS  PubMed  Google Scholar 

Yin L, Li N, Jia W, Wang N, Liang M, Yang X et al (2021) Skeletal muscle atrophy: from mechanisms to treatments. Pharmacol Res 172:105807. https://doi.org/10.1016/j.phrs.2021.105807

Article  CAS  PubMed  Google Scholar 

Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6:25–39. https://doi.org/10.1242/dmm.010389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45:2121–2129. https://doi.org/10.1016/j.biocel.2013.04.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sartori R, Romanello V, Sandri M (2021) Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 12:330. https://doi.org/10.1038/s41467-020-20123-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14:58–74. https://doi.org/10.1038/nrd4467

Article  CAS  PubMed  Google Scholar 

Gallagher H, Hendrickse PW, Pereira MG, Bowen TS (2023) Skeletal muscle atrophy, regeneration, and dysfunction in heart failure: impact of exercise training. J Sport Health Sci 12:557–567. https://doi.org/10.1016/j.jshs.2023.04.001

Article  PubMed  PubMed Central  Google Scholar 

Okita K, Kinugawa S, Tsutsui H (2013) Exercise intolerance in chronic heart failure: – skeletal muscle dysfunction and potential therapies –. Circ J 77:293–300. https://doi.org/10.1253/circj.CJ-12-1235

Article  CAS  PubMed  Google Scholar 

Rutledge CA (2024) Molecular mechanisms underlying sarcopenia in heart failure. J Cardiovasc Aging 4. https://doi.org/10.20517/jca.2023.40

Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H (2015) Skeletal muscle abnormalities in heart failure. Int Heart J 56:475–484. https://doi.org/10.1536/ihj.15-108

Article  CAS  PubMed  Google Scholar 

Batt J, Ahmed SS, Correa J, Bain A, Granton J (2014) Skeletal muscle dysfunction in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 50:74–86. https://doi.org/10.1165/rcmb.2012-0506OC

Article  CAS  PubMed  Google Scholar 

Moreira-Gonçalves D, Padrão AI, Ferreira R, Justino J, Nogueira-Ferreira R, Neuparth MJ et al (2015) Signaling pathways underlying skeletal muscle wasting in experimental pulmonary arterial hypertension. Biochimica et Biophys Acta (BBA) - Mol Basis Dis 1852:2722–31. https://doi.org/10.1016/j.bbadis.2015.10.002

Article  CAS  Google Scholar 

Mainguy V, Maltais F, Saey D, Gagnon P, Martel S, Simon M et al (2010) Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax 65:113–117. https://doi.org/10.1136/thx.2009.117168

Article  PubMed  Google Scholar 

Garfield BE, Crosby A, Shao D, Yang P, Read C, Sawiak S et al (2019) Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax 74:164–176. https://doi.org/10.1136/thoraxjnl-2017-211440

Article  PubMed  Google Scholar 

Xiang G, Ying K, Jiang P, Jia M, Sun Y, Li S et al (2022) Growth differentiation factor 11 induces skeletal muscle atrophy via a STAT3-dependent mechanism in pulmonary arterial hypertension. Skeletal Muscle 12:10. https://doi.org/10.1186/s13395-022-00292-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. https://doi.org/10.1146/annurev.biochem.78.081507.101607

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223. https://doi.org/10.1016/0955-0674(95)80031-x

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif