Evolving anticoagulation paradigms in left ventricular assist device (LVAD) patients: a focus on direct oral anticoagulants

McDavid A, MacBrair K, Emani S et al (2018) Anticoagulation management following left ventricular assist device implantation is similar across all provider strategies. Interact Cardiovasc Thorac Surg 26(1):60–65. https://doi.org/10.1093/icvts/ivx255

Article  PubMed  Google Scholar 

Loyaga-Rendon RY, Kazui T, Acharya D (2021) Antiplatelet and anticoagulation strategies for left ventricular assist devices. Ann Transl Med 9(6):521. https://doi.org/10.21037/atm-20-4849

Article  PubMed  PubMed Central  Google Scholar 

Ben Gal T, Ben Avraham B, Milicic D et al (2021) Guidance on the management of left ventricular assist device (LVAD)-supported patients for the non-LVAD specialist healthcare provider: executive summary. Eur J Heart Fail 23(10):1597–1609. https://doi.org/10.1002/ejhf.2327

Article  PubMed  Google Scholar 

Mehra MR, Uriel N, Naka Y et al (2019) A fully magnetically levitated left ventricular assist device - final report. N Engl J Med 380(17):1618–1627. https://doi.org/10.1056/NEJMoa1900486

Article  PubMed  Google Scholar 

Yin E (2023) Pearls in anticoagulation management for patients with left ventricular assist devices. Tex Heart Inst J 50(4):e238154. https://doi.org/10.14503/THIJ-23-8154

Article  PubMed  PubMed Central  Google Scholar 

Martinez BK, Yik B, Tran R et al (2018) Meta-analysis of time in therapeutic range in continuous-flow left ventricular assist device patients receiving warfarin. Artif Organs 42(7):700–704. https://doi.org/10.1111/aor.13116

Article  PubMed  CAS  Google Scholar 

Baumann Kreuziger LM, Kim B, Wieselthaler GM (2018) Antithrombotic therapy for mechanical circulatory support. J Thromb Haemost 16(1):1–9. https://doi.org/10.1111/jth.13902

Article  Google Scholar 

Dimond M, Looby M, Shah B et al (2024) Design and rationale for the direct oral anticoagulant apixaban in left ventricular assist devices (DOAC LVAD) study. J Card Fail 30(6):819–828. https://doi.org/10.1016/j.cardfail.2023.10.473

Article  PubMed  Google Scholar 

Lin DS, Lo HY, Huang KC et al (2023) Efficacy and safety of direct oral anticoagulants for stroke prevention in older patients with atrial fibrillation: a network meta-analysis of randomized controlled trials. J Am Heart Assoc 12(23):e030380. https://doi.org/10.1161/JAHA.123.030380

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meredith T, Schnegg B, Hayward C (2021) The use of direct oral anticoagulants in patients with ventricular assist devices: is there hope for factor Xa inhibition? Artif Organs 45(5):E123–E129. https://doi.org/10.1111/aor.13848

Article  PubMed  CAS  Google Scholar 

Heidenreich PA, Bozkurt B, Aguilar D et al (2022) 2022 AHA/ACC/HFSA guideline for the management of heart failure. Circulation 145(18):e895–e1032. https://doi.org/10.1161/CIR.0000000000001063

Article  PubMed  Google Scholar 

Maltais S, Kilic A, Nathan S et al (2017) Management of anticoagulation for continuous-flow left ventricular assist devices: a scientific statement from the American Heart Association. Circulation 135(25):e1–e42. https://doi.org/10.1161/CIR.0000000000000453

Article  Google Scholar 

McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

Article  PubMed  CAS  Google Scholar 

Kustos SA, Fasinu PS (2019) Direct-acting oral anticoagulants and their reversal agents—an update. Medicines (Basel) 6(4):103. https://doi.org/10.3390/medicines6040103

Article  PubMed  CAS  Google Scholar 

Margetić S, Goreta SŠ, Ćelap I, Razum M (2022) Direct oral anticoagulants (DOACs): from the laboratory point of view. Acta Pharm 72(4):459–482. https://doi.org/10.2478/acph-2022-0034

Article  PubMed  CAS  Google Scholar 

Lee CJ, Ansell JE (2011) Direct thrombin inhibitors. Br J Clin Pharmacol 72(4):581–592. https://doi.org/10.1111/j.1365-2125.2011.03916.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khalil F, Asleh R, Perue RK et al (2023) Vascular function in continuous flow LVADs: implications for clinical practice. Biomedicines 11(3):757. https://doi.org/10.3390/biomedicines11030757

Article  PubMed  PubMed Central  CAS  Google Scholar 

Capoccia M (2016) Mechanical circulatory support for advanced heart failure: are we about to witness a new “gold standard”? J Cardiovasc Dev Dis 3(4):35. https://doi.org/10.3390/jcdd3040035

Article  PubMed  PubMed Central  Google Scholar 

Giridharan GA, Berg IC, Ismail E et al (2023) Loss of pulsatility with continuous-flow left ventricular assist devices and the significance of the arterial endothelium in von-Willebrand factor production and degradation. Artif Organs 47(4):640–648. https://doi.org/10.1111/aor.14456

Article  PubMed  Google Scholar 

Selmi M, Chiu WC, Chivukula VK et al (2019) Blood damage in left ventricular assist devices: pump thrombosis or system thrombosis? Int J Artif Organs 42(3):113–124. https://doi.org/10.1177/0391398818806162

Article  PubMed  Google Scholar 

Nascimbene A, Neelamegham S, Frazier OH et al (2016) Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 127(25):3133–3141. https://doi.org/10.1182/blood-2015-10-636480

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jilma-Stohlawetz P, Quehenberger P, Schima H et al (2016) Acquired von Willebrand factor deficiency caused by LVAD is ADAMTS-13 and platelet dependent. Thromb Res 137:196–201. https://doi.org/10.1016/j.thromres.2015.11.002

Article  PubMed  CAS  Google Scholar 

Malone G, Abdelsayed G, Bligh F et al (2023) Advancements in left ventricular assist devices to prevent pump thrombosis and blood coagulopathy. J Anat 242(1):29–49. https://doi.org/10.1111/joa.13675

Article  PubMed  Google Scholar 

Fang P, Du J, Boraschi A et al (2022) Insights into the low rate of in-pump thrombosis with the HeartMate 3: does the artificial pulse improve washout? Front Cardiovasc Med 9:775780. https://doi.org/10.3389/fcvm.2022.775780

Article  PubMed  PubMed Central  Google Scholar 

Starling RC, Moazami N, Silvestry SC et al (2014) Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 370(1):33–40. https://doi.org/10.1056/NEJMoa1313385

Article  PubMed  CAS  Google Scholar 

Andreas M, Wiedemann D, Haberl T et al (2017) Safety and efficacy of dabigatran in LVAD patients: a clinical perspective. Eur J Cardiothorac Surg 51(5):908–912. https://doi.org/10.1093/ejcts/ezx020

Article  Google Scholar 

Terrovitis JV, Farmakis D, Katritsis DG et al (2015) The impact of dabigatran on anticoagulation outcomes in LVAD patients. Am J Cardiol 115(4):551–555. https://doi.org/10.1016/j.amjcard.2014.12.019

Article  Google Scholar 

Parikh VY, Parikh UM, Moctezuma-Ramirez A et al (2020) Factor Xa inhibitors in patients with continuous-flow left ventricular assist devices. Gen Thorac Cardiovasc Surg 68(11):1278–1284. https://doi.org/10.1007/s11748-020-01371-w

Article  PubMed  Google Scholar 

Whitehouse KR, Avula D, Kahlon T et al (2022) Apixaban as alternative anticoagulation for HM3 LVAD. ASAIO J 68(3):355–362

Article  Google Scholar 

Soares C, Desai Y, Sorensen E, Dees L, Ananthram M, Hicks A (2024) Comparing Apixaban With Warfarin for Therapeutic Anticoagulation in Left Ventricular Assist Devices. Am J Cardiol 224:14–16. https://doi.org/10.1016/j.amjcard.2024.05.036

Netuka I, Tucanova Z, Ivak P et al (2024) A prospective randomized trial of direct oral anticoagulant therapy with a fully magnetically levitated LVAD: the DOT-HM3 Study. Circulation 150(6):509–511. https://doi.org/10.1161/CIRCULATIONAHA.124.069726

Article  PubMed 

Comments (0)

No login
gif